10 50-4 Silicon (10 µg/mL in H2O)

High-Purity Standards

SECTION 1 IDENTIFICATION

Product Identifier

Product name	10 50-4 Silicon (10 µg/mL in H2O)
Synonyms	10 µg/mL Silicon in H2O
Other means of identification	10 50-4

Recommended use of the chemical and restrictions on use

Relevant identified uses | Use according to manufacturer's directions. |

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name | High-Purity Standards |
Address | PO Box 41727 SC 29423 United States |
Telephone | 843-767-7900 |
Fax | 843-767-7906 |
Website | highpuritystandards.com |
Email | Not Available |

Emergency phone number

Association / Organisation | INFOTRAC |
Emergency telephone numbers | 1-800-535-5053 |
Other emergency telephone numbers | 1-352-323-3500 |

SECTION 2 HAZARD(S) IDENTIFICATION

Classification of the substance or mixture

Classification | Not Applicable |

Label elements

| Hazard pictogram(s) | Not Applicable |
| SIGNAL WORD | NOT APPLICABLE |

Hazard statement(s)

Not Applicable

Hazard(s) not otherwise specified

Not Applicable

Precautionary statement(s) Prevention

Not Applicable

Precautionary statement(s) Response

Not Applicable

Precautionary statement(s) Storage

Not Applicable
Precautionary statement(s) Disposal
Not Applicable

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures
<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>7732-18-5</td>
<td>balance</td>
<td>water</td>
</tr>
<tr>
<td>16919-19-0</td>
<td>0.001</td>
<td>ammonium fluorosilicate</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST-AID MEASURES

Description of first aid measures

Eye Contact
If this product comes in contact with eyes:
- Wash out immediately with water.
- If irritation continues, seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation
If fumes, aerosols or combustion products are inhaled remove from contaminated area.
Other measures are usually unnecessary.

Ingestion
Immediately give a glass of water.
First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Most important symptoms and effects, both acute and delayed
See Section 11

Indication of any immediate medical attention and special treatment needed
Treat symptomatically.

SECTION 5 FIRE-FIGHTING MEASURES

Extinguishing media
- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility
- None known.

Special protective equipment and precautions for fire-fighters

Fire Fighting
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard
- Non combustible.
- Not considered a significant fire risk, however containers may burn.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
See section 8

Environmental precautions
See section 12

Methods and material for containment and cleaning up

Minor Spills
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Continued...
SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- Limit all unnecessary personal contact.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Conditions for safe storage, including any incompatibilities

- Polyethylene or polypropylene container.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Suitable container

- Polyethylene or polypropylene container.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility

- Avoid contamination of water, foodstuffs, feed or seed.
- None known

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCIDENTAL EXPOSURE LIMITS (OEL)

<table>
<thead>
<tr>
<th>INGREDIENT DATA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>ammonium fluorosilicate</td>
<td>Silicacites - Mica / Silicates - Soapstone / Silicates - Soapstone / Silicacites - Talc / Silicacites - Tremolite, asbestiform</td>
<td>0.1 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>See Table Z-3; less than 1% crystalline silica (respirable dust) / See Table Z-3; less than 1% crystalline silica, respirable dust / less than 1% crystalline silica, respirable dust / less than 1% crystalline silica, respirable dust / (less than 1% crystalline silica) / (containing asbestos) / use asbestos limit; (STEL (Excursion limit)/(as averaged over a sampling period of 30 minutes))</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z2</td>
<td>ammonium fluorosilicate</td>
<td>Fluorides</td>
<td>2.5 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>See Table Z-3; less than 1% crystalline silica; (as averaged over a sampling period of 30 minutes)</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>ammonium fluorosilicate</td>
<td>Fluorides as dust</td>
<td>2.5 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>(Z37.28-1969)</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium fluorosilicate</td>
<td>Ammonium hexafluorosilicate; (Ammonium silicofluoride)</td>
<td>12 mg/m³</td>
<td>130 mg/m³</td>
<td>780 mg/m³</td>
</tr>
<tr>
<td>water</td>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ammonium fluorosilicate</td>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exposure controls

- Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.
- The basic types of engineering controls are:
 - Process controls which involve changing the way a job activity or process is done to reduce the risk.
 - Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and...
“removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying “escape” velocities which, in turn, determine the “capture velocities” of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, fumes from degreasing etc., evaporation</td>
<td>0.25-0.5 m/s (50-100 f/min)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations</td>
<td>0.5-1 m/s (100-200 f/min)</td>
</tr>
<tr>
<td>direct spray, drum filling, conveyor loading</td>
<td>1.25 m/s (200-500 f/min)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling,</td>
<td>2.5-10 m/s (500-2000 f/min)</td>
</tr>
<tr>
<td>high speed wheel generated dusts</td>
<td></td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

1: Room air currents minimal or favourable to capture
2: Contaminants of low toxicity or nuisance value only
3: Intermittent, low production
4: Large hood or large air mass in motion

1: Disturbing room air currents
2: Contaminants of high toxicity
3: High production, heavy use
4: Small hood - local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields
- Chemical goggles
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate iritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adhesion for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. [AS/NZS 1350:1994 or national equivalent]

Eye and face protection

- Chemical goggles
- Safety glasses with side shields
- Safety glasses with side shields

Skin protection

See Hand protection below

Wear general protective gloves, eg. light weight rubber gloves.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material cannot be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact
- chemical resistance of glove material
- glove thickness and dexterity

Select gloves tested to a relevant standard (eg. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.

Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers’ technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Hands/feet protection

See Other protection below
SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>colorless</td>
</tr>
<tr>
<td>Physical state</td>
<td>liquid</td>
</tr>
<tr>
<td>Relative density (Water = 1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Partition coefficient n-octanol / water</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Auto-ignition temperature (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Viscosity (cSt)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>100</td>
</tr>
<tr>
<td>Molar mass</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Taste</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Available</td>
</tr>
<tr>
<td>Oxidising properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Surface Tension (dyn/cm or mN/m)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Gas group</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>pH as a solution (1%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>VOC g/L</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity

See section 7

Chemical stability

Product is considered stable and hazardous polymerisation will not occur.

Possibility of hazardous reactions

See section 7

Conditions to avoid

See section 7

Incompatible materials

See section 7

Hazardous decomposition products

See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Ingestion

The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence.

Skin Contact

The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Eye

Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).

Chronic

Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.

<table>
<thead>
<tr>
<th>Substance</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 50-4 Silicon (10 µg/mL in H2O)</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>water</td>
<td>TOXICITY</td>
<td>IRRITATION</td>
</tr>
<tr>
<td></td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
ammonium fluorosilicate

TOXICITY

Oral (mouse) LD50: 70 mg/kg[2]

IRRITATION

Not Available

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity
2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

WATER

Acute Toxicity

No significant acute toxicological data identified in literature search.

Skin Irritation/Corrosion

Carcinogenicity

Reproductivity

Serious Eye Damage/Irritation

STOT - Single Exposure

Respiratory or Skin sensitisation

STOT - Repeated Exposure

Mutagenicity

Aspiration Hazard

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

10 50-4 Silicon (10 µg/mL in H2O)

ENDPOINT

TEST DURATION (HR)

SPECIES

VALUE

SOURCE

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

ammonium fluorosilicate

ENDPOINT

TEST DURATION (HR)

SPECIES

VALUE

SOURCE

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

For Fluorides: Small amounts of fluoride have beneficial effects however, excessive intake over long periods may cause dental and/or skeletal fluorosis. Fluorides are absorbed by humans following inhalation of workplace and ambient air that has been contaminated, ingestion of drinking water and foods and dermal contact. Populations living in areas with high fluoride levels in groundwater may be exposed to higher levels of fluorides in their drinking water or in beverages prepared with the water. Among these populations, outdoor labourers, people living in hot climates, and people with excessive thirst will generally have the greatest daily intake of fluorides because they consume greater amounts of water.

Atmospheric Fate: Both hydrogen fluoride and particulate fluorides will be transported in the atmosphere and deposited on land or water by wet and dry deposition. Non-volatile inorganic fluoride particulates are removed from the atmosphere via condensation or nucleation processes. Fluorides adsorbed on particulate matter in the atmosphere are generally stable and are not readily hydrolyzed, although they may be degraded by radiation if they persist in the atmosphere. Fluorine and the silicon fluorides (fluosilicates, silicofluorides) are hydrolyzed in the atmosphere to form hydrogen fluoride. Hydrogen fluoride may combine with water vapour to produce an aerosol or fog of aqueous hydrofluoric acid. Inorganic fluoride compounds, with the exception of sulfur hexafluoride, are not expected to remain in the troposphere for long periods or to migrate to the stratosphere. Estimates of the residence time of sulfur hexafluoride in the atmosphere range from 500 to several thousand years. Fluoride in aerosols can be transported over large distances by wind or as a result of atmospheric turbulence. Fluorosilicic acid and hydrofluoric acid in high aquatic concentrations such as may be found in industrial waste ponds may volatilize, releasing silicon tetrafluoride and hydrogen fluoride into the atmosphere. Soluble inorganic fluorides may also form aerosols at the air/water interface or vaporize into the atmosphere whereas undissolved species generally undergo sedimentation.

Terrestrial Fate: Soils - Atmospheric fluorides may be transported to soils and surface waters through both wet and dry deposition processes where they may form complexes and bind strongly to soil and sediment. Solubilisation of inorganic fluorides from minerals may also be enhanced by the presence of bentonite clays and hemic acid. Factors that influence the mobility of inorganic fluorides in soil are pH and the formation of aluminium and calcium complexes. In more acidic soils, concentrations of inorganic fluoride were considerably higher in the deeper horizons. The low affinity of fluorides for organic material results in leaching from the more acidic surface horizon and increased retention by clay minerals and silt in the more alkaline, deeper horizons. The maximum adsorption of fluoride to soil was reported to occur at pH 5.5. In acidic soils with pH below 6, most of the fluoride is in complexes with either aluminium or iron. Fluoride in alkaline soils at pH 6.5 and above is almost completely fixed in soils as calcium fluoride, if sufficient calcium carbonate is available. Fluoride is extremely immobile in soil.

Aquatic Fate: Fresh Water: - In water, the transport and transformation of inorganic fluorides are influenced by pH, water hardness and the presence of ion-exchange materials such as clays. In natural water, fluoride forms strong complexes with aluminium in water, and fluorine chemistry in water is largely regulated by aluminium concentration and pH. Below pH 5.5, fluoride is almost entirely complexed with aluminium and consequently, the concentration of free F- ion is low. Once dissolved, inorganic fluorides remain in solution under conditions of low pH and hardness and in the presence of ion-exchange material. Sea Water - Fluoride forms stable complexes with calcium and magnesium, which are present in sea water. Calcium carbonate precipitation dominates the removal of dissolved fluoride from sea water. The residence time for fluoride in ocean sediment is calculated to be 2-3 million years.

Ecotoxicity: Fluorides have been shown to accumulate in animals that consume fluoride-containing foliage. However, accumulation is primarily in skeletal tissue and therefore, it is unlikely that fluoride will biomagnify up the food chain.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW (LogKOW = -1.38)</td>
</tr>
</tbody>
</table>
Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW (KOC = 14.3)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and/or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Product / Packaging disposal</th>
<th>Marine Pollutant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO</td>
</tr>
</tbody>
</table>

Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

- WATER(7732-18-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS
 - US - Pennsylvania - Hazardous Substance List
 - US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

- AMMONIUM FLUOROSILICATE(16919-19-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS
 - International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs
 - US - California OEHHA/AB - Chronic Reference Exposure Levels and Target Organs (CRELs)
 - US - Hawaii Air Contaminant Limits
 - US - Idaho - Limits for Air Contaminants
 - US - Massachusetts - Right To Know Listed Chemicals
 - US - Oregon Permissible Exposure Limits (Z-1)
 - US - Oregon Permissible Exposure Limits (Z-2)
 - US - Pennsylvania - Hazardous Substance List
 - US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
 - US OSHA Permissible Exposure Levels (PELs) - Table Z1
 - US OSHA Permissible Exposure Levels (PELs) - Table Z2
 - US OSHA Permissible Exposure Levels (PELs) - Table Z3
 - US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

- US CWA (Clean Water Act) - List of Hazardous Substances

- US OSHA Permissible Exposure Levels (PELs) - Table Z1

- US OSHA Permissible Exposure Levels (PELs) - Table Z2

- US OSHA Permissible Exposure Levels (PELs) - Table Z3

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

- SECTION 311/312 HAZARD CATEGORIES

 | Immediate (acute) health hazard | No |
 | Delayed (chronic) health hazard | No |
 | Fire hazard | No |
 | Pressure hazard | No |
 | Reactivity hazard | No |
US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4)

<table>
<thead>
<tr>
<th>Name</th>
<th>Reportable Quantity in Pounds (lb)</th>
<th>Reportable Quantity in kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium silicofluoride</td>
<td>1000</td>
<td>454</td>
</tr>
</tbody>
</table>

State Regulations

US. CALIFORNIA PROPOSITION 65

None Reported

National Inventory

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>N (water; ammonium fluorosilicate)</td>
</tr>
<tr>
<td>China - IEGSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC/ELINCS/NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N (water; ammonium fluorosilicate)</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Y</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:

- **Y** = All ingredients are on the inventory
- **N** = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium fluorosilicate</td>
<td>16919-19-0, 1309-32-6</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- **PC**—TWA: Permissible Concentration—Time Weighted Average
- **PC**—STEL: Permissible Concentration—Short Term Exposure Limit
- **IARC**: International Agency for Research on Cancer
- **ACGIH**: American Conference of Governmental Industrial Hygienists
- **STEL**: Short Term Exposure Limit
- **TEEL**: Temporary Emergency Exposure Limit
- **IDLH**: Immediately Dangerous to Life or Health Concentrations
- **OSF**: Odour Safety Factor
- **NOAEL**: No Observed Adverse Effect Level
- **LOAEL**: Lowest Observed Adverse Effect Level
- **TLV**: Threshold Limit Value
- **LOD**: Limit Of Detection
- **OTV**: Odour Threshold Value
- **BCF**: BioConcentration Factors
- **BEI**: Biological Exposure Index

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.