SECTION 1 IDENTIFICATION

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>10 58-1 Thallium (10µg/mL in 2% HNO3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>10µg/mL Thallium in 2% HNO3</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>Corrosive liquid, acidic, inorganic, n.o.s. (contains nitric acid)</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>10 58-1</td>
</tr>
</tbody>
</table>

Recommended use of the chemical and restrictions on use

Recommended identified uses

Use according to manufacturer's directions.

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>High-Purity Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>PO Box 41727 SC 29423 United States</td>
</tr>
<tr>
<td>Telephone</td>
<td>843-767-7900</td>
</tr>
<tr>
<td>Fax</td>
<td>843-767-7906</td>
</tr>
<tr>
<td>Website</td>
<td>highpuritystandards.com</td>
</tr>
<tr>
<td>Email</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Emergency phone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>INFOTRAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>1-800-535-5053</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>1-352-323-3500</td>
</tr>
</tbody>
</table>

SECTION 2 HAZARD(S) IDENTIFICATION

Classification of the substance or mixture

| Classification | Metal Corrosion Category 1, Skin Corrosion/Irritation Category 1A, Serious Eye Damage Category 1 |

Label elements

| Hazard pictogram(s) | ![Hazard Pictogram] |

| SIGNAL WORD | DANGER |

Hazard statement(s)

<table>
<thead>
<tr>
<th>H290</th>
<th>May be corrosive to metals.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H314</td>
<td>Causes severe skin burns and eye damage.</td>
</tr>
</tbody>
</table>

Hazard(s) not otherwise specified

Not Applicable

Precautionary statement(s) Prevention

Continued...
SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>7440-28-0</td>
<td>0.001</td>
<td>thallium</td>
</tr>
<tr>
<td>7697-37-2</td>
<td>2</td>
<td>nitric acid</td>
</tr>
<tr>
<td>7732-18-5</td>
<td>balance</td>
<td>water</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST-AID MEASURES

Description of first aid measures

Eye Contact
- If this product comes in contact with the eyes:
 - Immediately hold eyelids apart and flush the eye continuously with running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from the eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
 - Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
- If skin or hair contact occurs:
 - Immediately flush body and clothes with large amounts of water, using safety shower if available.
 - Quickly remove all contaminated clothing, including footwear.
 - Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.
 - Transport to hospital, or doctor.

Inhalation
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling.
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues.
- Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema.
- Corrosive substances may cause lung damage (e.g., lung oedema, fluid in the lungs).
- As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested.
- Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her.

Ingestion
- For advice, contact a Poisons Information Centre or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lay patient down or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e., becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as the casualty can comfortably drink.
- Transport to hospital or doctor without delay.

Most important symptoms and effects, both acute and delayed
See Section 11

Indication of any immediate medical attention and special treatment needed
For acute or short term repeated exposures to strong acids:
- Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling.
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues.

INGESTION:
- Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury.
- Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
- Charcoal has no place in acid management.
- Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:
Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping. Deep second-degree burns may benefit from topical silver sulfadiazine.

EYE:
- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjunctival cul-de-sacs. Irrigation should last at least 20-30 minutes. **DO NOT use neutralising agents or any other additives.** Several litres of saline are required.
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- Steroid eye drops should only be administered with the approval of a consulting ophthalmologist.

SECTION 5 FIRE-FIGHTING MEASURES

Extinguishing media
- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

<table>
<thead>
<tr>
<th>Fire Incompatibility</th>
<th>None known.</th>
</tr>
</thead>
</table>

Special protective equipment and precautions for fire-fighters

Fire Fighting
- Non combustible.
- Not considered to be a significant fire risk.
- Acids may react with metals to produce hydrogen, a highly flammable and explosive gas.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- May emit corrosive, poisonous fumes. May emit acrid smoke.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
See section 8

Environmental precautions
See section 12

Methods and material for containment and cleaning up

Minor Spills
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Major Spills
- **Personal Protective Equipment advice is contained in Section 8 of the SDS.**

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- **WARNING:** To avoid violent reaction, **ALWAYS add material to water and NEVER water to material.**
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, **DO NOT eat, drink or smoke.**
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuffs containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

<table>
<thead>
<tr>
<th>Suitable container</th>
<th>DO NOT use aluminium or galvanised containers</th>
</tr>
</thead>
</table>
Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>nitric acid</td>
<td>Nitric acid</td>
<td>Not Available</td>
<td>Not Available</td>
<td>TLV9 Basis: URT & eye irritation; dental erosion</td>
<td></td>
</tr>
<tr>
<td>US NIOSH Recommended Exposure Limits (RELs)</td>
<td>nitric acid</td>
<td>Aqua fortis, Engravers acid, Hydrogen nitrate, Red fuming nitric acid (RFNA), White fuming nitric acid (WFNA)</td>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>nitric acid</td>
<td>Nitric acid</td>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>thallium</td>
<td>Thallium</td>
<td>0.06 mg/m³</td>
<td>13 mg/m³</td>
<td>20 mg/m³</td>
</tr>
<tr>
<td>nitric acid</td>
<td>Nitric acid</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>water</td>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exposure controls

Appropriate engineering controls

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapours, degreasing etc.; evaporating from tank (in still air)</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
</tbody>
</table>

Notes

Inorganic acids are generally soluble in water with the release of hydrogen ions. The resulting solutions have pH's of less than 7.0.

- Inorganic acids neutralise chemical bases (for example: amines and inorganic hydroxides) to form salts - neutralisation can generate dangerously large amounts of heat in small spaces.
- The dissolution of inorganic acids in water or the dilution of their concentrated solutions with additional water may generate significant heat.
- The addition of water to inorganic acids often generates sufficient heat in the small region of mixing to cause some of the water to boil explosively. The resulting "bumping" can spatter the acid.
- Inorganic acids react with active metals, including such structural metals as aluminum and iron, to release hydrogen, a flammable gas.
- Inorganic acids can initiate the polymerisation of certain classes of organic compounds.
- Inorganic acids react with cyanide compounds to release gaseous hydrogen cyanide.
- Inorganic acids generate flammable and/or toxic gases in contact with dithiocarbamates, isocyanates, mercaptans, nitrides, nitriles, sulfides, and strong reducing agents. Additional gas-generating reactions occur with sulfites, nitrates, thiosulfates (to give H2S and SO3), dithionites (SO2), and even carbonates.
- Acids often catalyse (increase the rate of) chemical reactions.

Storage incompatibility

- Check regularly for spills and leaks.
- Lined metal can, lined metal pail can.
- Plastic pail.
- Polyvinyl drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials:

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 deg. C and 40 deg C.):

- Removable head packaging;
- Cans with friction closures and:
- low pressure tubes and cartridges may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION
Personal protection
- Safety glasses with unpierced side shields may be used where continuous eye protection is desirable, as in laboratories: spectacles are not sufficient where complete eye protection is needed such as when handling bulk quantities, where there is a danger of splashing, or if the material may be under pressure.
- Chemical goggles wherever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NS 1306 or national equivalent]

Skin protection
See Hand protection below.

Hands/feet protection
- Elbow length PVC gloves
- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

Body protection
See Other protection below.

Other protection
- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- PVC Apron.
- Eye wash unit.
- Ensure there is ready access to a safety shower.

Thermal hazards
Not Available

Respiratory protection
Type A Filter of sufficient capacity. (AS/NS 1715 & 1716, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>colorless</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td><2</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Partition coefficient n-octanol / water</td>
<td>Not Available</td>
</tr>
<tr>
<td>Auto-ignition temperature (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>Not Available</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Taste</td>
<td>Not Available</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Oxidising properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Surface Tension (dyn/cm or mN/m)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Gas group</td>
<td>Not Available</td>
</tr>
<tr>
<td>Relative density (Water = 1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Viscosity (cSt)</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Odour
- Not Available

Odour threshold
- Not Available

pH (as supplied)
- <2

Melting point / freezing point (°C)
- Not Available

Initial boiling point and boiling range (°C)
- Not Available

Flash point (°C)
- Not Available

Evaporation rate
- Not Available

Flammability
- Not Available

Upper Explosive Limit (%)
- Not Available

Lower Explosive Limit (%)
- Not Available

Vapour pressure (kPa)
- Not Available

Upper end of the range

<table>
<thead>
<tr>
<th>Environment</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

- **Lower end of the range**
 - 1: Room air currents minimal or favourable to capture
 - 2: Contaminants of low toxicity or of nuisance value only.
 - 3: Intermittent, low production.
 - 4: Large hood or large air mass in motion

- **Upper end of the range**
 - 1: Disturbing room air currents
 - 2: Contaminants of high toxicity
 - 3: High production, heavy use
 - 4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.
SECTION 10 STABILITY AND REACTIVITY

Reactivity
See section 7

Chemical stability
Contact with alkali material liberates heat

Possibility of hazardous reactions
See section 7

Conditions to avoid
See section 7

Incompatible materials
See section 7

Hazardous decomposition products
See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled
The material can cause respiratory irritation in some persons. The body’s response to such irritation can cause further lung damage. Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness. The material has NOT been classified by EC Directives or other classification systems as “harmful by inhalation”. This is because of the lack of corroborating animal or human evidence.

Ingestion
Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. The material has NOT been classified by EC Directives or other classification systems as “harmful by ingestion”. This is because of the lack of corroborating animal or human evidence.

Skin Contact
Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue. Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye
If applied to the eyes, this material causes severe eye damage. Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely.

Chronic
Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and/or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

10 58-1 Thallium (10µg/mL in 2% HNO3)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Toxicity</th>
<th>Irritation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thallium</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Nitric acid</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Water</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Legends:
1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. * Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

THALLIUM
Structural changes in nerves and sheath, changes in extraocular muscles, hair loss recorded

NITRIC ACID
Asthma-like symptoms may continue for months or even years after exposure to the material ends. For acid mists, aerosols, vapours Test results suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to about 6.5. The material may produce severe irritation to the eye causing pronounced inflammation. The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function. The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Oral (?) LD50: 50-500 mg/kg * [Various Manufacturers]

WATER
No significant acute toxicological data identified in literature search.

Acute Toxicity
 Skin Irritation/Corrosion
 Carcinogenicity
 Reproductivity

Continued...
Ecotoxicity:
The tolerance of water organisms towards pH margin and variation is diverse. Recommended pH values for test species listed in OECD guidelines are between 6.0 and almost 9. Acute testing with fish showed 96h-LC50 at about pH 3.5. Prevent, by any means available, spillage from entering drains or water courses. DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW (LogKOW = -1.38)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW (KOC = 14.3)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal (if no suitable treatment or disposal facility can be identified).
- Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation with soda ash or soda lime followed by: burial in a landfill specifically licensed to accept chemical and/or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

- Chemwatch: 9-242110
- Catalogue number: 10 58-1
- Version No: 2.2
- Issue Date: 05/31/2017
- Print Date: 05/31/2017

10 58-1 Thallium (10µg/mL in 2% HNO3)

ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
Not Applicable | Not Applicable | Not Applicable | Not Applicable | Not Applicable

thallium

<table>
<thead>
<tr>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>21mg/L</td>
<td>4</td>
</tr>
<tr>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>0.13mg/L</td>
<td>4</td>
</tr>
<tr>
<td>EC50</td>
<td>240</td>
<td>Algae or other aquatic plants</td>
<td>0.040876mg/L</td>
<td>4</td>
</tr>
<tr>
<td>NOEC</td>
<td>720</td>
<td>Fish</td>
<td>0.04mg/L</td>
<td>5</td>
</tr>
</tbody>
</table>

nitric acid

<table>
<thead>
<tr>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOEC</td>
<td>16</td>
<td>Crustacea</td>
<td>107mg/L</td>
<td>4</td>
</tr>
</tbody>
</table>

water

<table>
<thead>
<tr>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Legend:
- Data available but does not fill the criteria for classification
- Data available to make classification
- Data Not Available to make classification

Continued...
Land transport (DOT)

<table>
<thead>
<tr>
<th>Source</th>
<th>Product name</th>
<th>Pollution Category</th>
<th>Ship Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Pollutant NO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UN number 3264

<table>
<thead>
<tr>
<th>UN proper shipping name</th>
<th>Corrosive liquid, acidic, inorganic, n.o.s. (contains nitric acid)</th>
</tr>
</thead>
</table>

Transport hazard class(es)

<table>
<thead>
<tr>
<th>Class</th>
<th>Subrisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Packing group II

Environmental hazard Not Applicable

Special precautions for user

<table>
<thead>
<tr>
<th>Hazard Label</th>
<th>Special provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>386, B2, IB2, T11, TP2, TP27</td>
</tr>
</tbody>
</table>

Air transport (ICAO-IATA / DGR)

UN number 3264

<table>
<thead>
<tr>
<th>UN proper shipping name</th>
<th>CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. (contains nitric acid)</th>
</tr>
</thead>
</table>

Transport hazard class(es)

<table>
<thead>
<tr>
<th>ICAO/IATA Class</th>
<th>ICAO / IATA Subrisk</th>
<th>ERG Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Not Applicable</td>
<td>8L</td>
</tr>
</tbody>
</table>

Packing group II

Environmental hazard Not Applicable

Special precautions for user

<table>
<thead>
<tr>
<th>Special provisions</th>
<th>A3A803</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cargo Only Packing Instructions</td>
<td>855</td>
</tr>
<tr>
<td>Cargo Only Maximum Qty / Pack</td>
<td>30 L</td>
</tr>
<tr>
<td>Passenger and Cargo Packing Instructions</td>
<td>851</td>
</tr>
<tr>
<td>Passenger and Cargo Maximum Qty / Pack</td>
<td>1 L</td>
</tr>
<tr>
<td>Passenger and Cargo Limited Quantity Packing Instructions</td>
<td>Y840</td>
</tr>
<tr>
<td>Passenger and Cargo Limited Maximum Qty / Pack</td>
<td>0.5 L</td>
</tr>
</tbody>
</table>

Sea transport (IMDG-Code / GG See)

UN number 3264

<table>
<thead>
<tr>
<th>UN proper shipping name</th>
<th>Corrosive liquid, acidic, inorganic, n.o.s. * (contains nitric acid)</th>
</tr>
</thead>
</table>

Transport hazard class(es)

<table>
<thead>
<tr>
<th>IMDG Class</th>
<th>IMDG Subrisk</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Not Applicable</td>
<td></td>
</tr>
</tbody>
</table>

Packing group II

Environmental hazard Not Applicable

Special precautions for user

<table>
<thead>
<tr>
<th>Special provisions</th>
<th>EMS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-A, S-B</td>
</tr>
</tbody>
</table>

Limited Quantities 1 L

Transport in bulk according to Annex II of MARPOL and the IBC code

<table>
<thead>
<tr>
<th>Source</th>
<th>Product name</th>
<th>Pollution Category</th>
<th>Ship Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk</td>
<td>Nitric acid (70% and over)</td>
<td>Y ; Y</td>
<td>2 ; 2</td>
</tr>
</tbody>
</table>

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture
THALLIUM (7440-28-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Massachusetts - Right To Know Listed Chemicals
US - Minnesota Permissible Exposure Limits (PELs)
US - Pennsylvania - Hazardous Substance List
US - Rhode Island Hazardous Substance List
US ACGIH Threshold Limit Values (TLV)

NITRIC ACID (7697-37-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List
US - Alaska Limits for Air Contaminants
US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)
US - Hawaii Air Contaminant Limits
US - Idaho - Limits for Air Contaminants
US - Massachusetts - Right To Know Listed Chemicals
US - Michigan Exposure Limits for Air Contaminants
US - Minnesota Permissible Exposure Limits (PELs)
US - Oregon Permissible Exposure Limits (Z-1)
US - Pennsylvania - Hazardous Substance List
US - Rhode Island Hazardous Substance List
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
US - Washington Permissible Exposure limits of air contaminants
US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
US ACGIH Threshold Limit Values (TLV)
US CWA (Clean Water Act) - List of Hazardous Substances
US EPCRA Section 313 Chemical List
US NIOSH Recommended Exposure Limits (RELs)
US OSHA Permissible Exposure Levels (PELs) - Table Z1
US SARA Section 302 Extremely Hazardous Substances

WATER (7732-18-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Pennsylvania - Hazardous Substance List

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

SECTION 311/312 HAZARD CATEGORIES

Immediate (acute) health hazard
Delayed (chronic) health hazard
Fire hazard
Pressure hazard
Reactivity hazard

Yes
No
No
No

US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4)

<table>
<thead>
<tr>
<th>Name</th>
<th>Reportable Quantity in Pounds (lb)</th>
<th>Reportable Quantity in kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thallium</td>
<td>1000</td>
<td>454</td>
</tr>
<tr>
<td>Nitric acid</td>
<td>1000</td>
<td>454</td>
</tr>
</tbody>
</table>

State Regulations

US. CALIFORNIA PROPOSITION 65

None Reported

National Inventory Status

Australia - AICS Y
Canada - DSL Y
Canada - NDSL N (thallium; water; nitric acid)
China - IECSC Y
Europe - EINEC / ELINCS / NLP Y
Japan - ENCS N (thallium; water; nitric acid)
Korea - KECI Y
New Zealand - NZIoC Y
Philippines - PICCS Y
USA - TSCA Y

Legend:
Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations