100063-4 Tungsten (1000μg/mL in 0.1% NH4OH)

High-Purity Standards

SECTION 1 IDENTIFICATION

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>100063-4 Tungsten (1000μg/mL in 0.1% NH4OH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>1000μg/mL Tungsten in 0.1% NH4OH, 100063-4</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>Ammonium hydrogen sulfate (contains water)</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>100063-4</td>
</tr>
</tbody>
</table>

Recommended use of the chemical and restrictions on use

Relevant identified uses

Use according to manufacturer's directions.

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name

High-Purity Standards

PO Box 41727 SC 29423 United States

Telephone 843-767-7900

Fax 843-767-7906

Website highpuritystandards.com

Email Not Available

Emergency phone number

Association / Organisation INFO TRAC

Emergency telephone numbers 1-800-635-5053

Other emergency telephone numbers 1-352-323-3500

SECTION 2 HAZARD(S) IDENTIFICATION

Classification of the substance or mixture

Classification Metal Corrosion Category 1, Skin Corrosion/Irritation Category 1A, Serious Eye Damage Category 1

Label elements

GHS label elements

SIGNAL WORD DANGER

Hazard statement(s)

H290 May be corrosive to metals.

H314 Causes severe skin burns and eye damage.

Hazard(s) not otherwise specified

Not Applicable

Precautionary statement(s) Prevention

Continued...
SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>11120-25-5</td>
<td>0.1 (as W)</td>
<td>ammonium tungstate</td>
</tr>
<tr>
<td>1336-21-6</td>
<td>0.1</td>
<td>ammonium hydroxide</td>
</tr>
<tr>
<td>7732-18-5</td>
<td>Balance</td>
<td>water</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST-AID MEASURES

Description of first aid measures

Eye Contact
If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Remove of contact lenses after an eye injury should only be undertaken by skilled personnel.
- Transport to hospital or doctor without delay.

Skin Contact
If skin or hair contact occurs:
- Immediately flush body and clothes with large amounts of water, using safety shower if available.
- Quickly remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.
- Transport to hospital, or doctor.

Inhalation
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.
- Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema.
- Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs).
- As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested.
- Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her.

Ingestion
- For advice, contact a Poisons Information Centre or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen if necessary.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- Where eyes have been exposed, flush immediately with water and continue to irrigate with normal saline during transport to hospital.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and

Most important symptoms and effects, both acute and delayed
See Section 11

Indication of any immediate medical attention and special treatment needed
for corrosives:

BASIC TREATMENT

Continued...
does not drool.
Skin burns should be covered with dry, sterile bandages, following decontamination.
DO NOT attempt neutralisation as exothermic reaction may occur.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consider endoscopy to evaluate oral injury.
- Consult a toxicologist as necessary.

Extinguishing media

- Jets of water.
- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility

None known.

Special protective equipment and precautions for fire-fighters

Fire Fighting

Non combustible.
Not considered a significant fire risk, however containers may burn.
May emit corrosive fumes.

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Major Spills

SECTION 5 FIRE-FIGHTING MEASURES

SECTION 6 ACCIDENTAL RELEASE MEASURES

SECTION 7 HANDLING AND STORAGE
Precautions for safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- DO NOT allow clothing wet with material to stay in contact with skin.

Other information

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuffs containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.).

- Removable head packaging;
- Cans with friction closures and
- low pressure tubes and cartridges may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in

Storage incompatibility

- Vapours or solutions of ammonia are corrosive to copper, copper alloys, galvanised metal and aluminium. Mixtures of ammonia and air lying within the explosive limits can occur above aqueous solutions of varying strengths.
- Avoid contact with sodium hydroxide, iron and cadmium.
- Several incidents involving sudden “boiling” (occasionally violent) of a concentrated solution (d, 0.880, 35 wt %.) have occurred when screw-capped winchesters are opened. These are attributable to supersaturation of the solution with gas caused by increases in temperature subsequent to preparation and bottling. The effect is particularly marked with winchesters filled in winter and opened in summer.
- Ammonia polymerises violently with ethylene oxide.
- Ammonia attacks some coatings, plastics and rubber.
- Attack copper, bronze, brass, aluminium, steel and their alloys.
- Avoid strong acids, acid chlorides, acid anhydrides and chlorofluorocarbons.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>ammonium hydroxide</td>
<td>Ammonia</td>
<td>35 mg/m³ / 50 ppm</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>ammonium hydroxide</td>
<td>Ammonia</td>
<td>25 ppm</td>
<td>35 ppm</td>
<td>Not Available</td>
<td>TLV® Basis: Eye dam; URT irr</td>
</tr>
<tr>
<td>US NIOSH Recommended Exposure Limits (RELS)</td>
<td>ammonium hydroxide</td>
<td>Anhydrous ammonia, Aqua ammonia, Aqueous ammonia [Note: Often used in an aqueous solution.]</td>
<td>18 mg/m³ / 25 ppm</td>
<td>27 mg/m³ / 35 ppm</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium tungstate</td>
<td>Ammonium tungstate(VI)</td>
<td>4.1 mg/m³</td>
<td>45 mg/m³</td>
<td>270 mg/m³</td>
</tr>
</tbody>
</table>
ammonium hydroxide | Ammonium hydroxide | 61 ppm | 330 ppm | 2,300 ppm
--- | --- | --- | --- | ---
ammonium hydroxide | Ammonia | Not Available | Not Available | Not Available

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:
- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Local exhaust ventilation which isolates a hazard and removes it from the work area.
- Ventilation that strategically "adds" and "removes" air in the work environment.

The design of an engineering control system should take into account the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Appropriate engineering controls

<table>
<thead>
<tr>
<th>Type of Contaminant:</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapours, degreasing etc., evaporating from tank (in still air),</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes,pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1.25 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- Chemical goggles, whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lenses should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly.
- Alternatively a gas mask may replace splash goggles and face shields.

Eye and face protection

- Chemical goggles, whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lenses should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

- See Hand protection below

Hands/feet protection

- Elbow length PVC gloves
- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.
- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
- The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.
- Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
 - frequency and duration of contact,
 - chemical resistance of glove material,
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.

Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:
- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection See Other protection below

Other protection
- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

Thermal hazards Not Available

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>colorless</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity
- See section 7

Chemical stability
- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions
- See section 7

Conditions to avoid
- See section 7

Incompatible materials
- See section 7

Hazardous decomposition products
- See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects
100063-4 Tungsten (1000μg/mL in 0.1% NH4OH)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tungsten</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ammonium Tungstate</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>dermal (rat) LD50: >2000 mg/kg[^1]</td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: >2000 mg/kg[^1]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ammonium Hydroxide</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalation (rat) LC50: 2000 ppm/4hr[^2]</td>
<td>Eye (rabbit): 0.25 mg SEVERE</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 350 mg/kg[^2]</td>
<td>Eye (rabbit): 1 mg/30s SEVERE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: >90000 mg/kg[^2]</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer’s SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Toxicity:

- **Inhaled**
 - The material can cause respiratory irritation in some persons. The body’s response to such irritation can cause further lung damage.
 - The material has NOT been classified by EC Directives or other classification systems as “harmful by inhalation”. This is because of the lack of corroborating animal or human evidence.
 - The highly irritant properties of ammonia vapour result as the gas dissolves in mucus fluids and forms irritant, even corrosive solutions.
 - Inhalation of the ammonia fumes causes coughing, vomiting, reddening of lips, mouth, nose, throat and conjunctiva. While higher concentrations can cause temporary blindness, restlessness, tightness in the chest, pulmonary oedema (lung damage), weak pulse and cyanosis.
 - Inhalation of high concentrations of vapour may cause breathing difficulty, tightness in chest, pulmonary oedema and lung damage. Brief exposure to high concentrations > 5000 ppm may cause death due to asphyxiation (suffocation) or fluid in the lungs.
 - Prolonged or regular minor exposure to the vapour may cause persistent irritation of the eyes, nose and upper respiratory tract. Massive ammonia exposures may produce chronic airway hyperactivity and asthma with associated pulmonary function changes. The average nasal retention of ammonia by human subjects was found to be 83%.

- **Ingestion**
 - The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion.
 - The material has NOT been classified by EC Directives or other classification systems as “harmful by ingestion”. This is because of the lack of corroborating animal or human evidence.
 - Large doses of ammonia or injected ammonium salts may produce diarrhoea and may be sufficiently absorbed to produce increased production of urine and systemic poisoning. Symptoms include weakening of facial muscle, tremor, anxiety, reduced muscle and limb control.

- **Skin Contact**
 - The material can produce severe chemical burns following direct contact with the skin.
 - Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.
 - Mild skin reaction is seen with contact of the vapour of this material on moist skin. High concentrations or direct contact with solutions produces severe pain, a stinging sensation, burns and blisters and possible brown stains. Death could result from extensive burning. Vapour exposure may rarely, produce an itchy rash.
 - Open cuts, abraded or irritated skin should not be exposed to this material.
 - Entry into the bloodstream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

- **Eye**
 - The material can produce severe chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating.
 - If applied to the eyes, this material causes severe eye damage.

- **Chronic**
 - Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue.
 - Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.
 - Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.
 - Prolonged or repeated minor exposure to ammonia gas/vapour may cause long-term irritation to the eyes, nose and upper respiratory tract. Repeated exposure or prolonged contact may produce dermatitis, and conjunctivitis.
 - Other effects may include ulcerative changes to the mouth and bronchial and gastrointestinal disturbances. Adaptation to usually irritating concentrations may result in tolerance. In animals, repeated exposures to sub-lethal levels produces adverse effects on the respiratory tract, liver, kidneys and spleen. Exposure at 675 ppm for several weeks produced eye irritation in dogs and rabbits. Corneal opacity, covering between a quarter to one half of the total surface area, was evident in rabbits.

Substances:

- **Ammonium Tungstate**
- **Ammonium Hydroxide**
- **Water**

Health Effects:

- **Skin Sensitisation**
- **Respiratory or Skin Irritation**
- **Skin Irritation/Corrosion**
- **Carcinogenicity**
- **Mutagenicity**
- **Reproductivity**
- **Aspiration Hazard**
- **STOT - Repeated Exposure**
- **STOT - Single Exposure**

Health Notes:

- **AMMONIUM TUNGSTATE**
 - Tungsten can cause a reduction in body temperature, and enlargement of the adrenal glands and kidneys if injected.

- **AMMONIUM HYDROXIDE**
 - The material may produce severe irritation to the eyes causing pronounced inflammation.

- **AMMONIUM TUNGSTATE & AMMONIUM HYDROXIDE**
 - Asthma-like symptoms may continue for months or even years after exposure to the material ceases.

- **AMMONIUM TUNGSTATE & WATER**
 - No significant acute toxicological data identified in literature search.
SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium tungstate</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>>181mg/L</td>
<td>2</td>
</tr>
<tr>
<td>ammonium tungstate</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>>163mg/L</td>
<td>2</td>
</tr>
<tr>
<td>ammonium tungstate</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>>7.35mg/L</td>
<td>2</td>
</tr>
<tr>
<td>ammonium tungstate</td>
<td>NOEC</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>0.812mg/L</td>
<td>2</td>
</tr>
<tr>
<td>ammonium hydroxide</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>15mg/L</td>
<td>4</td>
</tr>
<tr>
<td>ammonium hydroxide</td>
<td>NOEC</td>
<td>72</td>
<td>Fish</td>
<td>3.5mg/L</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

For Ammonia:

- Atmospheric Fate: Ammonia reacts rapidly with available acids (mainly sulfuric, nitric, and sometimes hydrochloric acid) to form the corresponding salts. Ammonia is persistent in the air.
- Aquatic Fate: Biodegrades rapidly to nitrate, producing a high oxygen demand. Non-persistent in water (half-life 2 days).
- Ecotoxicity: Moderately toxic to fish under normal temperature and pH conditions and harmful to aquatic life at low concentrations. Does not concentrate in food chain.

Prevent, by any means available, spillage from entering drains or water courses.

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium hydroxide</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>water</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium hydroxide</td>
<td>LOW (LogKOW = 0.229)</td>
</tr>
<tr>
<td>water</td>
<td>LOW (LogKOW = -1.38)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium hydroxide</td>
<td>LOW (KOC = 14.3)</td>
</tr>
<tr>
<td>water</td>
<td>LOW (KOC = 14.3)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
- A Hierarchy of Controls seems to be common - the user should investigate:
 - Reduction
 - Reuse
 - Recycling
 - Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Continued...
Marine Pollutant

NO

Land transport (DOT)

<table>
<thead>
<tr>
<th>UN number</th>
<th>2506</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>Ammonium hydrogen sulfate (contains water)</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td>Class 8, Subrisk Not Applicable</td>
</tr>
<tr>
<td>Packing group</td>
<td>II</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Special precautions for user</td>
<td>Hazard Label 8, Special provisions IB8, IP2, IP4, T3, TP33</td>
</tr>
</tbody>
</table>

Air transport (ICAO-IATA / DGR)

<table>
<thead>
<tr>
<th>UN number</th>
<th>2506</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>Ammonium hydrogen sulphate (contains water)</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td>ICAO/IATA Class 8, ICAO / IATA Subrisk Not Applicable, ERG Code 8L</td>
</tr>
<tr>
<td>Packing group</td>
<td>II</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Special precautions for user</td>
<td>Special provisions Not Applicable, Cargo Only Packing Instructions 863, Cargo Only Maximum Qty / Pack 50 kg, Passenger and Cargo Packing Instructions 859, Passenger and Cargo Maximum Qty / Pack 15 kg, Passenger and Cargo Limited Quantity Packing Instructions Y844, Passenger and Cargo Limited Maximum Qty / Pack 5 kg</td>
</tr>
</tbody>
</table>

Sea transport (IMDG-Code / GGVSee)

<table>
<thead>
<tr>
<th>UN number</th>
<th>2506</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>AMMONIUM HYDROGEN SULPHATE (contains water)</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td>IMDG Class 8, IMDG Subrisk Not Applicable</td>
</tr>
<tr>
<td>Packing group</td>
<td>II</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Special precautions for user</td>
<td>EMS Number F-A, S-B, Special provisions Not Applicable, Limited Quantities 1 kg</td>
</tr>
</tbody>
</table>

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

<table>
<thead>
<tr>
<th>AMMONIUM TUNGSTATE</th>
<th>11120-25-5</th>
<th>IS FOUND ON THE FOLLOWING REGULATORY LISTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AMMONIUM HYDROXIDE (1336-21-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Alaska Limits for Air Contaminants
US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)
US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)
US - California Permissible Exposure Limits for Chemical Contaminants
US - Hawaii Air Contaminant Limits
US - Idaho - Limits for Air Contaminants
US - Massachusetts - Right To Know Listed Chemicals
US - Michigan Exposure Limits for Air Contaminants
US - Minnesota Permissible Exposure Limits (PELs)
US - Oregon Permissible Exposure Limits (Z-1)
US - Pennsylvania - Hazardous Substance List
US - Rhode Island Hazardous Substance List
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

WATER (7732-18-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Pennsylvania - Hazardous Substance List

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

SECTION 311/312 HAZARD CATEGORIES

Immediate (acute) health hazard: Yes
Delayed (chronic) health hazard: No
Fire hazard: No
Pressure hazard: No
Reactivity hazard: No

US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4)

<table>
<thead>
<tr>
<th>Name</th>
<th>Reportable Quantity in Pounds (lb)</th>
<th>Reportable Quantity in kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium hydroxide</td>
<td>1000</td>
<td>454</td>
</tr>
<tr>
<td>Ammonia</td>
<td>100</td>
<td>45.4</td>
</tr>
</tbody>
</table>

State Regulations

US. CALIFORNIA PROPOSITION 65

None Reported

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>N (ammonium tungstate)</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>N (water; ammonium hydroxide)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N (water)</td>
</tr>
<tr>
<td>Korea - KECl</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>N (ammonium tungstate)</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>N (ammonium tungstate)</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:
Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average
PC – STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit,
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor