CLP Interference Check Standard 1

High-Purity Standards

Catalogue number: CLP-INF-1

Version No: 1.1

Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

SECTION 1 IDENTIFICATION

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>CLP Interference Check Standard 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>CLP-INF-1</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>Corrosive liquid, acidic, inorganic, n.o.s.</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>CLP-INF-1</td>
</tr>
</tbody>
</table>

Recommended use of the chemical and restrictions on use

Relevant identified uses

Use according to manufacturer's directions.

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name: High-Purity Standards

Address: PO Box 41727 SC 29423 United States

Telephone: 843-767-7900

Fax: 843-767-7906

Website: highpuritystandards.com

Email: Not Available

Emergency phone number

Association / Organisation: INFOTRAC

Emergency telephone numbers: 1-800-535-5053

Other emergency telephone numbers: 1-352-323-3500

SECTION 2 HAZARD(S) IDENTIFICATION

Classification of the substance or mixture

Classification

Serious Eye Damage Category 1, Metal Corrosion Category 1, Skin Corrosion/Inflammation Category 1A

Label elements

GHS label elements

SIGNAL WORD: DANGER

Hazard statement(s)

H290 May be corrosive to metals.

H314 Causes severe skin burns and eye damage.

Hazard(s) not otherwise specified

Not Applicable

Precautionary statement(s) Prevention

Continued...
Precautionary statement(s) Response

P301+P330+P331 IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.

Precautionary statement(s) Storage

P405 Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>7429-90-5</td>
<td>0.5</td>
<td>aluminium</td>
</tr>
<tr>
<td>7440-70-2</td>
<td>0.5</td>
<td>calcium</td>
</tr>
<tr>
<td>7439-89-6</td>
<td>0.2</td>
<td>iron</td>
</tr>
<tr>
<td>13446-18-9</td>
<td>0.5</td>
<td>magnesium nitrate</td>
</tr>
<tr>
<td>7697-37-2</td>
<td>5</td>
<td>nitric acid</td>
</tr>
<tr>
<td>7732-18-5</td>
<td>Balance</td>
<td>water</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST-AID MEASURES

Description of first aid measures

Eye Contact

- If this product comes in contact with the eyes:
 - Immediately hold eyelids apart and flush the eye continuously with running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
 - Transport to hospital or doctor without delay.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

- If skin or hair contact occurs:
 - Immediately flush body and clothes with large amounts of water, using safety shower if available.
 - Quickly remove all contaminated clothing, including footwear.
 - Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.
 - Transport to hospital, or doctor.

Inhalation

- If fumes or combustion products are inhaled remove from contaminated area.
 - Lay patient down. Keep warm and rested.
 - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
 - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
 - Transport to hospital, or doctor without delay.
 - As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested.
 - Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719)

Ingestion

- For advice, contact a Poisons Information Centre or a doctor at once.
 - Urgent hospital treatment is likely to be needed.
 - Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
 - Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
 - Transport to hospital or doctor without delay.

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed

For acute or short term repeated exposures to strong acids:

- Airway problems may arise from laryngeal oedema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require tracheotomy if endotracheal intubation is contraindicated by excessive swelling.
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues.

INGESTION:

- Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury.
Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
Charcoal has no place in acid management.
Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:
Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
Deep second-degree burns may benefit from topical silver sulfadiazine.

EYE:
Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjunctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required.
Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
Steroid eye drops should only be administered with the approval of a consulting ophthalmologist.

[Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 FIRE-FIGHTING MEASURES

Extinguishing media
There is no restriction on the type of extinguisher which may be used.
Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

| Fire Incompatibility | None known |

Special protective equipment and precautions for fire-fighters

| Fire Fighting |
| Non combustible. |
| Not considered to be a significant fire risk. |
| Acids may react with metals to produce hydrogen, a highly flammable and explosive gas. |
| Heating may cause expansion or decomposition leading to violent rupture of containers. |
When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

| Minor Spills |
| Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. |
| Check regularly for spills and leaks. |
| Clean up all spills immediately. |
| Avoid breathing vapours and contact with skin and eyes. |
| Control personal contact with the substance, by using protective equipment. |
| Contain and absorb spill with sand, earth, inert material or vermiculite. |
| Wipe up. |
| Place in a suitable, labelled container for waste disposal. |

| Major Spills |
| All |

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

| Safe handling |
| Avoid all personal contact, including inhalation. |
| Wear protective clothing when risk of exposure occurs. |
| Use in a well-ventilated area. |
| WARNING: To avoid violent reaction ALWAYS add material to water and NEVER water to material. |
| Avoid smoking, naked lights or ignition sources. |
| Avoid contact with incompatible materials. |
| When handling, DO NOT eat, drink or smoke. |
| Keep containers securely sealed when not in use. |
| Avoid physical damage to containers. |
| Always wash hands with soap and water after handling. |
| Work clothes should be laundered separately. Launder contaminated clothing before re-use. |
| Use good occupational work practice. |
| Observe manufacturer’s storage and handling recommendations contained within this SDS. |
| Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. |

| Other information |
| Store in original containers. |
| Keep containers securely sealed. |
| Store in a cool, dry, well-ventilated area. |
Conditions for safe storage, including any incompatibilities

- **Suitable container**
 - DO NOT use aluminium or galvanised containers.
 - Check regularly for spills and leaks.
 - Lined metal can, lined metal pail/ can.
 - Plastic pail.
 - Polyliner drum.
 - Packing as recommended by manufacturer.
 - Check all containers are clearly labelled and free from leaks.
 - For low viscosity materials
 - Drums and jerricans must be of the non-removable head type.
 - For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): Removable head packaging;
 - Cans with friction closures and
 - low pressure tubes and cartridges
 may be used.

 Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

- **Storage incompatibility**
 - For aluminas (aluminium oxide): Incompatible with hot chlorinated rubber.
 - In the presence of chlorine trifluoride may react violently and ignite.
 - May initiate explosive polymerization of olefin oxides including ethylene oxide.
 - Produces exothermic reaction above 200 C with halocarbons and an exothermic reaction at ambient temperatures with halocarbons in the presence of other metals.
 - Produces exothermic reaction with oxygen difluoride.
 - May form explosive mixture with oxygen difluoride.
 - Forms explosive mixtures with sodium nitrate.
 - Reacts vigorously with vinyl acetate.

 Aluminium oxide is an amphoteric substance, meaning it can react with both acids and bases, such as hydrofluoric acid and sodium hydroxide, acting as an acid with a base and a base with an acid, neutralising the other and producing a salt.

 - Inorganic acids are generally soluble in water with the release of hydrogen ions. The resulting solutions have pH’s less than 7.0.
 - Inorganic acids neutralise chemical bases (for example: amines and inorganic hydroxides) to form salts - neutralisation can generate dangerously large amounts of heat in small spaces.
 - The dissolution of inorganic acids in water or the dilution of their concentrated solutions with additional water may generate significant heat.
 - The addition of water to inorganic acids often generates sufficient heat in the small region of mixing to cause some of the water to boil explosively. The resulting “bumping” can spatter the acid.
 - Inorganic acids react with active metals, including such structural metals as aluminium and iron, to release hydrogen, a flammable gas.
 - Inorganic acids can initiate the polymerisation of certain classes of organic compounds.
 - Inorganic acids react with cyanide compounds to release gaseous hydrogen cyanide. Inorganic acids generate flammable and/or toxic gases in contact with dithiocarbamates, isocyanates, mercaptans, nitrides, nitriles, sulfides, and strong reducing agents. Additional gas-generating reactions occur with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), and even carbonates.
 - Acids often catalyse (increase the rate of) chemical reactions.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

<table>
<thead>
<tr>
<th>OCCUPATIONAL EXPOSURE LIMITS (OEL)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>aluminium</td>
<td>Aluminum, metal / Aluminum, metal-Respirable fraction</td>
<td>15 mg/m³ / 5 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Total dust; (as Al) / (as Al)</td>
</tr>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>aluminium</td>
<td>Silver, and compounds - Metal, dust and fume</td>
<td>0.1 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>TLV® Basis: Argyria</td>
</tr>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>aluminium</td>
<td>Aluminum metal and insoluble compounds</td>
<td>1 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>TLV® Basis: Pneumoconiosis; LRT ir; neurotoxicity</td>
</tr>
<tr>
<td>US NIOSH Recommended Exposure Limits (RELs)</td>
<td>aluminium</td>
<td>Aluminum, Aluminum metal, Aluminum powder, Elemental aluminum</td>
<td>10 (total), 5 (resp) mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>iron</td>
<td>Manganese compounds / Manganese fume</td>
<td>Not Available</td>
<td>Not Available</td>
<td>5 mg/m³</td>
<td>(as Mn)</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>iron</td>
<td>Inert or Nuisance Dust</td>
<td>5 mg/m³ / 15 mg/m³ / 50 mg/l</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Respirable fraction; All inert or nuisance dusts, whether mineral, inorganic, or organic; not listed specifically by substance name are covered by this limit, which is the same as the Particulates Not Otherwise Regulated (PNOR) limit in Table Z-1. / Total dust; All inert or nuisance dusts, whether mineral, inorganic, or organic; not listed specifically by substance name are covered by this limit, which is the same as the Particulates Not Otherwise Regulated (PNOR) limit in Table Z-1.</td>
</tr>
</tbody>
</table>

Continued...
Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.
- Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapours, degreasing etc., evaporating from tank (in still air)</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

- Lower end of the range: 1: Room air currents minimal or favourable to capture
- Upper end of the range: 1: Disturbing room air currents

- 2: Contaminants of low toxicity or of nuisance value only.
- 2: Contaminants of high toxicity

- 3: Intermittent, low production.
- 3: High production, heavy use

- 4: Large hood or large air mass in motion
- 4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.

Eye and face protection

- Chemical goggles whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.

Continued...
Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.

Alternatively a gas mask may replace splash goggles and face shields.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lenses as soon as practicable. Lenses should be removed at the first signs of eye redness or irritation - lenses should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection
See Hand protection below

Hands/feet protection
- Elbow length PVC gloves
- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

Body protection
See Other protection below

Other protection
- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

Thermal hazards
Not Available

Respiratory protection
Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Colourless</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Relative density (Water = 1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Partition coefficient n-octanol / water</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>Auto-ignition temperature (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Viscosity (cSt)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Taste</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Available</td>
</tr>
<tr>
<td>Oxidising properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Surface Tension (dyn/cm or mN/m)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Gas group</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>pH as a solution (1%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>VOC g/L</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity
See section 7

Chemical stability
- Contact with alkaline material liberates heat

Possibility of hazardous reactions
See section 7

Conditions to avoid
See section 7

Incompatible materials
See section 7

Hazardous decomposition products
See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled
The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness. The material has **NOT** been classified by EC Directives or other classification systems as “harmful by inhalation”. This is because of the lack of corroborating animal or human evidence.
Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence.

Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue. Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Thus it may cause itching and skin reaction and inflammation.

Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

If applied to the eyes, this material causes severe eye damage. Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely.

Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and/or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

Animal testing shows long term exposure to aluminium oxides may cause lung disease and cancer, depending on the size of the particle. The smaller the size, the greater the tendencies of causing harm.

CLP Interference Check Standard 1

<table>
<thead>
<tr>
<th>Substance</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: >2000 mg/kg[^1]</td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>calcium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermal (rabbit) LD50: >2500 mg/kg[^1]</td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: >2000 mg/kg[^1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 7500 mg/kg[^1]</td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>magnesium nitrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 5440 mg/kg[^2]</td>
<td>Eye (rabbit): 500 mg/24h - mild</td>
<td></td>
</tr>
<tr>
<td>nitric acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 0.13 mg/L/4hr[^2]</td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 2500 ppm/1hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: >90000 mg/kg[^2]</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. * Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

CALCIUM
The solid may react violently on contact with wet skin tissue, i.e. eyes, mouth, causing chemical and thermal burns. The acute effects include burns, ulceration, or tissue death, severe eye damage (corneal burns or opacification), and probable blindness. Inhalation of dust or fumes (especially from a fire involving calcium) will cause shortness of breath, nausea, headache, nose and respiratory tract irritation and in extreme, pneumonitis.

MAGNESIUM NITRATE
The material may be irritating to the eye, with prolonged contact causing inflammation. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Magnesium nitrate hexahydrate is a methaemoglobin-forming agent which if inhaled or ingested in high enough concentrations may cause fatigue, headache, dizziness. (Source: I.L.O. Encyclopaedia)

NITRIC ACID

for acid mists, aerosols, vapours
Data from assays for genotoxic activity in vitro suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to about 6.5. The material may produce severe irritation to the eye causing pronounced inflammation.

The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.

The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Oral (?) LD50: 50-500 mg/kg * [Various Manufacturers]
ALUMINIUM & CALCIUM & WATER
CALCIUM & NITRIC ACID

Persistence: Water/Soil
Persistence: Air

Bioaccumulation
Mobility

ALUMINIUM & CALCIUM & WATER
Bioaccumulation
Mobility

STOT - Single Exposure
STOT - Repeated Exposure

Asthma-like symptoms may continue for months or even years after exposure to the material ceases.

Acute Toxicity
Carcinogenicity
Skin Irritation/Corrosion
Reproductivity
Serious Eye Damage/Irritation
Respiratory or Skin sensitisation
Mutagenicity

STOT - Single Exposure
STOT - Repeated Exposure

Legend:
– Data available but does not fill the criteria for classification
– Data available to make classification
– Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminium</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.078-0.108mg/L</td>
<td>2</td>
</tr>
<tr>
<td>aluminium</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>0.7364mg/L</td>
<td>2</td>
</tr>
<tr>
<td>aluminium</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>0.0054mg/L</td>
<td>2</td>
</tr>
<tr>
<td>aluminium</td>
<td>BCF</td>
<td>360</td>
<td>Algae or other aquatic plants</td>
<td>9mg/L</td>
<td>4</td>
</tr>
<tr>
<td>aluminium</td>
<td>EC50</td>
<td>120</td>
<td>Fish</td>
<td>0.0000051mg/L</td>
<td>5</td>
</tr>
<tr>
<td>aluminium</td>
<td>NOEC</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>>=0.004mg/L</td>
<td>2</td>
</tr>
<tr>
<td>calcium</td>
<td>EC50</td>
<td>24</td>
<td>Crustacea</td>
<td>6934mg/L</td>
<td>5</td>
</tr>
<tr>
<td>calcium</td>
<td>NOEC</td>
<td>48</td>
<td>Crustacea</td>
<td>33.3mg/L</td>
<td>2</td>
</tr>
<tr>
<td>iron</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>0.05mg/L</td>
<td>2</td>
</tr>
<tr>
<td>iron</td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>3.7mg/L</td>
<td>4</td>
</tr>
<tr>
<td>iron</td>
<td>BCF</td>
<td>24</td>
<td>Crustacea</td>
<td>0.0000002mg/L</td>
<td>4</td>
</tr>
<tr>
<td>iron</td>
<td>EC50</td>
<td>504</td>
<td>Crustacea</td>
<td>4.49mg/L</td>
<td>2</td>
</tr>
<tr>
<td>iron</td>
<td>NOEC</td>
<td>504</td>
<td>Fish</td>
<td>0.52mg/L</td>
<td>2</td>
</tr>
<tr>
<td>magnesium nitrate</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>1378mg/L</td>
<td>2</td>
</tr>
<tr>
<td>magnesium nitrate</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>>=100mg/L</td>
<td>2</td>
</tr>
<tr>
<td>magnesium nitrate</td>
<td>NOEC</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>100mg/L</td>
<td>2</td>
</tr>
<tr>
<td>nitric acid</td>
<td>NOEC</td>
<td>16</td>
<td>Crustacea</td>
<td>107mg/L</td>
<td>4</td>
</tr>
</tbody>
</table>

Ecotoxicity:
The tolerance of water organisms to pH margin and variation is diverse. Recommended pH values for test species listed in OECD guidelines are between 6.0 and 7.5. Acute testing with fish showed 96h-LC50 at about pH 3.5.

Prevent spillage from entering drains or waterways.

DO NOT discharge into sewers or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW (LogKOW = -1.38)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW (KOC = 14.3)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Recycle wherever possible.
Consult manufacturer for recycling options or consult local or regional waste management for disposal if no suitable treatment or disposal facility can be identified.
Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation with soda-ash or soda-lime followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).

Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

| Marine Pollutant | NO |

Land transport (DOT)

- **UN number**: 3264
- **UN proper shipping name**: Corrosive liquid, acidic, inorganic, n.o.s.
- **Transport hazard class(es)**:
 - **Class**: 8
 - **Subrisk**: Not Applicable
- **Packing group**: II
- **Environmental hazard**: Not Applicable
- **Special precautions for user**:
 - **Hazard Label**: 8
 - **Special provisions**: 386, B2, I11, T11, TP2, TP27

Air transport (ICAO-IATA / DGR)

- **UN number**: 3264
- **UN proper shipping name**: Corrosive liquid, acidic, inorganic, n.o.s. *
- **Transport hazard class(es)**:
 - **ICAO/IATA Class**: 8
 - **ICAO / IATA Subrisk**: Not Applicable
 - **ERG Code**: 8L
- **Packing group**: II
- **Environmental hazard**: Not Applicable
- **Special precautions for user**:
 - **Special provisions**: A3A803
 - **Cargo Only Packing Instructions**: 855
 - **Cargo Only Maximum Qty / Pack**: 30 L
 - **Passenger and Cargo Packing Instructions**: 851
 - **Passenger and Cargo Maximum Qty / Pack**: 1 L
 - **Passenger and Cargo Limited Quantity Packing Instructions**: Y840
 - **Passenger and Cargo Limited Maximum Qty / Pack**: 0.5 L

Sea transport (IMDG-Code / GGVSee)

- **UN number**: 3264
- **UN proper shipping name**: CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S.
- **Transport hazard class(es)**:
 - **IMDG Class**: 8
 - **IMDG Subrisk**: Not Applicable
- **Packing group**: II
- **Environmental hazard**: Not Applicable
- **Special precautions for user**:
 - **Special provisions**: 274
 - **Limited Quantities**: 1 L

Transport in bulk according to Annex II of MARPOL and the IBC code
SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

<table>
<thead>
<tr>
<th>Source</th>
<th>Product name</th>
<th>Pollution Category</th>
<th>Ship Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk</td>
<td>Nitric acid (70% and over)/Nitric acid (less than 70%)</td>
<td>Y; Y</td>
<td>2;2</td>
</tr>
</tbody>
</table>

ALUMINUM (7429-90-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- US - Alaska Limits for Air Contaminants
- US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)
- US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)
- US - California Permissible Exposure Limits for Chemical Contaminants
- US - California Proposition 65 - Carcinogens
- US - Hawaii Air Contaminant Limits
- US - Massachusetts - Right To Know Listed Chemicals
- US - Michigan Exposure Limits for Air Contaminants
- US - Minnesota Permissible Exposure Limits (PELs)
- US - Oregon Permissible Exposure Limits (Z-1)
- US - Pennsylvania - Hazardous Substance List
- US - Rhode Island Hazardous Substance List
- US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants
- US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
- US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants

CALCIUM (7440-79-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- US - Massachusetts - Right To Know Listed Chemicals
- US - Pennsylvania - Hazardous Substance List

IRON (7439-96-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- US - Alaska Limits for Air Contaminants
- US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)
- US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)
- US - California Permissible Exposure Limits for Chemical Contaminants
- US - Hawaii Air Contaminant Limits
- US - Idaho - Limits for Air Contaminants
- US - Michigan Exposure Limits for Air Contaminants
- US - Minnesota Permissible Exposure Limits (PELs)
- US - Oregon Permissible Exposure Limits (Z-1)
- US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

MAGNESIUM NITRATE (13446-18-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- US - Massachusetts - Right To Know Listed Chemicals
- US - Pennsylvania - Hazardous Substance List
- US - Rhode Island Hazardous Substance List

NITRIC ACID (7697-32-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List for Air Carriers
- US - Alaska Limits for Air Contaminants
- US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)
- US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)
- US - California Permissible Exposure Limits for Chemical Contaminants
- US - Hawaii Air Contaminant Limits
- US - Idaho - Limits for Air Contaminants
- US - Massachusetts - Right To Know Listed Chemicals
- US - Michigan Exposure Limits for Air Contaminants
- US - Minnesota Permissible Exposure Limits (PELs)
- US - Oregon Permissible Exposure Limits (Z-1)
- US - Pennsylvania - Hazardous Substance List
- US - Rhode Island Hazardous Substance List
- US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants
- US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

WATER (7732-18-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- US - Pennsylvania - Hazardous Substance List

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

SECTION 311/312 HAZARD CATEGORIES

Continued...
Immediate (acute) health hazard: Yes
Delayed (chronic) health hazard: No
Fire hazard: No
Pressure hazard: No
Reactivity hazard: No

US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4)

<table>
<thead>
<tr>
<th>Name</th>
<th>Reportable Quantity in Pounds (lb)</th>
<th>Reportable Quantity in kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric acid</td>
<td>1000</td>
<td>454</td>
</tr>
</tbody>
</table>

State Regulations

US. CALIFORNIA PROPOSITION 65
WARNING: This product contains a chemical known to the State of California to cause cancer and birth defects or other reproductive harm

US - CALIFORNIA PROPOSITION 65 - CARCINOGENS & REPRODUCTIVE TOXICITY (CRT): LISTED SUBSTANCE
Nickel compounds Listed

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>N (calcium; magnesium nitrate; water; aluminium; iron; nitric acid)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N (calcium; water; aluminium; iron)</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Y</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:
Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminium</td>
<td>7429-90-5, 91729-14-2</td>
</tr>
<tr>
<td>calcium</td>
<td>7440-70-2, 8047-59-4</td>
</tr>
<tr>
<td>magnesium nitrate</td>
<td>13446-18-9, 10377-60-3, 10213-15-7</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average
PC – STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit,
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.