

EPA 200.7 Cal Std 5

High-Purity Standards

Catalogue number: ICP-200.7-5

Version No: 2.2

Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **06/03/2017** Print Date: **06/03/2017** S.GHS.USA.EN

SECTION 1 IDENTIFICATION

Product Identifier

Product name	EPA 200.7 Cal Std 5	
Synonyms	able	
Proper shipping name	Corrosive liquid, acidic, inorganic, n.o.s. (contains nitric acid and hydrofluoric acid)	
Other means of identification	ICP-200.7-5	

Recommended use of the chemical and restrictions on use

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	High-Purity Standards	
Address	PO Box 41727 SC 29423 United States	
Telephone	843-767-7900	
Fax	767-7906	
Website	highpuritystandards.com	
Email	Not Available	

Emergency phone number

• • •	
Association / Organisation	INFOTRAC
Emergency telephone numbers	1-800-535-5053
Other emergency telephone numbers	1-352-323-3500

SECTION 2 HAZARD(S) IDENTIFICATION

Classification of the substance or mixture

Classification

Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Metal Corrosion Category 1, Skin Corrosion/Irritation Category 1A

Label elements

Hazard pictogram(s)

SIGNAL WORD D

D DANGER

Hazard statement(s)

H302	Harmful if swallowed.	
H312	l in contact with skin.	
H290	by be corrosive to metals.	
H314	Causes severe skin burns and eye damage.	

Chemwatch: 9-248552

Page 2 of 25

Catalogue number: ICP-200.7-5

Version No: 2.2

EPA 200.7 Cal Std 5

Issue Date: 06/03/2017 Print Date: 06/03/2017

Not Applicable

Precautionary statement(s) Prevention

P260 Do not breathe dust/fume/gas/mist/vapours/spray.

Precautionary statement(s) Response

P301+P330+P331

IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.

Precautionary statement(s) Storage

P405

O5 Store locked up.

Precautionary statement(s) Disposal

P501

Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
7429-90-5	0.0025	<u>aluminium</u>
7440-36-0	0.0025	antimony
7440-38-2	0.0025	arsenic
7440-39-3	0.0025	<u>barium</u>
7440-41-7	0.0005	<u>beryllium</u>
7440-42-8	0.0025	<u>boron</u>
7440-43-9	0.001	<u>cadmium</u>
7440-47-3	0.0025	chromium
7440-48-4	0.001	cobalt
7440-50-8	0.0025	<u>copper</u>
7439-89-6	0.0025	<u>iron</u>
7439-92-1	0.0025	<u>lead</u>
554-13-2	0.0025 (as Li)	lithium carbonate
6156-78-1	0.0025 (as Mn)	manganese(II) acetate tetrahydrate
7439-97-6	0.0005	mercury (elemental)
7439-98-7	0.001	<u>molybdenum</u>
7440-02-0	0.0025	<u>nickel</u>
7722-76-1	0.005 (as P)	ammonium phosphate, monobasic
7782-49-2	0.0025	selenium
16919-19-0	0.0025 (as Si)	ammonium fluorosilicate
7440-22-4	0.00025	<u>silver</u>
7440-24-6	0.0025	strontium
7440-28-0	0.0025	<u>thallium</u>
7440-31-5	0.001	<u>tin</u>
7803-55-6	0.001 (as V)	ammonium metavanadate
7440-66-6	0.0025	zinc
7697-37-2	2	nitric acid
7664-39-3	0-0.49	hydrofluoric acid
7732-18-5	balance	water

SECTION 4 FIRST-AID MEASURES

Description of first aid measures

If this product comes in contact with the eyes:

Eye Contact

Immediately hold eyelids apart and flush the eye continuously with running water.

- ▶ Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- ► Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes
- Transport to hospital or doctor without delay.
- ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Chemwatch: 9-248552 Page 3 of 25 Issue Date: 06/03/2017 Catalogue number: ICP-200.7-5

Version No: 2.2

EPA 200.7 Cal Std 5

Print Date: 06/03/2017

For thermal burns:

- Decontaminate area around burn.
- Consider the use of cold packs and topical antibiotics.

For first-degree burns (affecting top layer of skin)

- Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides.
- Use compresses if running water is not available.
- ▶ Cover with sterile non-adhesive bandage or clean cloth.
- Do NOT apply butter or ointments: this may cause infection.
- Give over-the counter pain relievers if pain increases or swelling, redness, fever occur.

For second-degree burns (affecting top two layers of skin)

- ▶ Cool the burn by immerse in cold running water for 10-15 minutes.
- Use compresses if running water is not available.
- ▶ Do NOT apply ice as this may lower body temperature and cause further damage.
- Do NOT break blisters or apply butter or ointments; this may cause infection.
- ▶ Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape.

To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort):

- Lay the person flat.
- ► Elevate feet about 12 inches.
- ► Elevate burn area above heart level, if possible.
- Cover the person with coat or blanket.
- ▶ Seek medical assistance. Skin Contact

For third-degree burns

Seek immediate medical or emergency assistance.

In the mean time:

- Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound.
- Separate burned toes and fingers with dry, sterile dressings.
- Do not soak burn in water or apply ointments or butter; this may cause infection.
- To prevent shock see above.
- For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway.
- Have a person with a facial burn sit up.
- ▶ Check pulse and breathing to monitor for shock until emergency help arrives.

If there is evidence of severe skin irritation or skin burns:

- ▶ Avoid further contact. Immediately remove contaminated clothing, including footwear.
- Flush skin under running water for 15 minutes.
- Avoiding contamination of the hands, massage calcium gluconate gel into affected areas, pay particular attention to creases in skin.
- Contact the Poisons Information Centre.
- Continue gel application for at least 15 minutes after burning sensation ceases.
- ▶ If pain recurs, repeat application of calcium gluconate gel or apply every 20 minutes.
- ▶ If no gel is available, continue washing for at least 15 minutes, using soap if available. If patient is conscious, give six calcium gluconate or calcium carbonate tablets in water by mouth.
- ► Transport to hospital, or doctor, urgently.
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if
- ▶ Transport to hospital, or doctor, without delay.
- Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema.
- ▶ Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs).
- As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested.
- Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/h

Inhalation

(ICSC13719)

- For massive exposures: If dusts, vapours, aerosols, fumes or combustion products are inhaled, remove from contaminated area.
- Lay patient down.
- Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- If victim is conscious, give six calcium gluconate or calcium carbonate tablets in water by mouth.
- ► Transport to hospital, or doctor, urgently.

Ingestion

- For advice, contact a Poisons Information Centre or a doctor at once.
- ▶ Urgent hospital treatment is likely to be needed.
- wed do **NOT** induce vo
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- ▶ Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink
- ► Transport to hospital or doctor without delay.

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed

Following acute or short term repeated exposure to hydrofluoric acid:

- ▶ Subcutaneous injections of Calcium Gluconate may be necessary around the burnt area. Continued application of Calcium Gluconate Gel or subcutaneous Calcium Gluconate should then continue for 3-4 days at a frequency of 4-6 times per day. If a "burning" sensation recurs, apply more frequently.
- Systemic effects of extensive hydrofluoric acid burns include renal damage, hypocalcaemia and consequent cardiac arrhythmias. Monitor haematological, respiratory, renal, cardiac and electrolyte status at least daily. Tests should include FBE, blood gases, chest X-ray, creatinine and electrolytes, urine output, Ca ions, Mg ions and phosphate ions. Continuous ECG monitoring
- Where serum calcium is low, or clinical, or ECG signs of hypocalcaemia develop, infusions of calcium gluconate, or if less serious, oral Sandocal, should be given. Hydrocortisone 500 mg in a

Chemwatch: 9-248552

Page 4 of 25

EPA 200.7 Cal Std 5

Version No: 2.2

Catalogue number: ICP-200.7-5

four to six hourly infusion may help.

- Antibiotics should not be given as a routine, but only when indicated.
- ▶ Eye contact pain may be excruciating and 2-3 drops of 0.05% pentocaine hydrochloride may be instilled, followed by further irrigation

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Index Sampling Time Comments

1. Methaemoglobin in blood 1.5% of haemoglobin During or end of shift B, NS, SQ

B: Background levels occur in specimens collected from subjects NOT exposed.

NS: Non-specific determinant; Also seen after exposure to other materials

SQ: Semi-quantitative determinant - Interpretation may be ambiguous; should be used as a screening test or confirmatory test.

For acute or short term repeated exposures to fluorides:

- Fluoride absorption from gastro-intestinal tract may be retarded by calcium salts, milk or antacids.
- Fluoride particulates or fume may be absorbed through the respiratory tract with 20-30% deposited at alveolar level.
- ▶ Peak serum levels are reached 30 mins. post-exposure; 50% appears in the urine within 24 hours.
- For acute poisoning (endotracheal intubation if inadequate tidal volume), monitor breathing and evaluate/monitor blood pressure and pulse frequently since shock may supervene with little warning. Monitor ECG immediately, watch for arrhythmias and evidence of Q-T prolongation or T-wave changes. Maintain monitor. Treat shock vigorously with isotonic saline (in 5% glucose) to restore blood volume and enhance renal excretion.
- ▶ Where evidence of hypocalcaemic or normocalcaemic tetany exists, calcium gluconate (10 ml of a 10% solution) is injected to avoid tachycardia.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

DeterminantIndexSampling TimeCommentsFluorides in urine3 mg/gm creatininePrior to shiftB, NS10mg/gm creatinineEnd of shiftB, NS

B: Background levels occur in specimens collected from subjects NOT exposed

NS: Non-specific determinant; also observed after exposure to other exposures.

SECTION 5 FIRE-FIGHTING MEASURES

Extinguishing media

- ▶ There is no restriction on the type of extinguisher which may be used
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility None known.

Special protective equipment and precautions for fire-fighters

Fire Fighting	
Fire/Explosion Hazard	 Non combustible. Not considered to be a significant fire risk. Acids may react with metals to produce hydrogen, a highly flammable and explosive gas. Heating may cause expansion or decomposition leading to violent rupture of containers. May emit corrosive, poisonous fumes. May emit acrid smoke. When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles. May emit corrosive fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

	• •
Minor Spills	 Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Check regularly for spills and leaks. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course.

Issue Date: 06/03/2017

Print Date: 06/03/2017

Chemwatch: 9-248552 Page 5 of 25

EPA 200.7 Cal Std 5

Version No: 2.2

Catalogue number: ICP-200.7-5

Issue Date: 06/03/2017 Print Date: 06/03/2017

Stop leak if safe to do so.

- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using
- ▶ If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- ► Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials
 - When handling, **DO NOT** eat, drink or smoke.
 - Keep containers securely sealed when not in use.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately. Launder contaminated clothing before re-use.
 - Use good occupational work practice.
 - Observe manufacturer's storage and handling recommendations contained within this SDS.
 - ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

Storage incompatibility

Safe handling

- ► Store in original containers
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
 - Store away from incompatible materials and foodstuff containers.
 - Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

▶ DO NOT use aluminium or galvanised containers

- ▶ Lined metal can, lined metal pail/ can.
- ▶ Plastic pail.
- ▶ Polyliner drum.
- ▶ Packing as recommended by manufacturer.
- ► Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- ▶ Drums and jerricans must be of the non-removable head type.
 - ▶ Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- Suitable container ► Removable head packaging;
 - ► Cans with friction closures and
 - ▶ low pressure tubes and cartridges

may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

▶ Material is corrosive to most metals, glass and other siliceous materials.

For aluminas (aluminium oxide):

Incompatible with hot chlorinated rubber.

In the presence of chlorine trifluoride may react violently and ignite.

-May initiate explosive polymerisation of olefin oxides including ethylene oxide.

-Produces exothermic reaction above 200 C with halocarbons and an exothermic reaction at ambient temperatures with halocarbons in the presence of other metals.

-Produces exothermic reaction with oxygen difluoride.

-May form explosive mixture with oxygen difluoride

-Forms explosive mixtures with sodium nitrate.

-Reacts vigorously with vinyl acetate.

Aluminium oxide is an amphoteric substance, meaning it can react with both acids and bases, such as hydrofluoric acid and sodium hydroxide, acting as an acid with a base and a base with an acid, neutralising the other and producing a salt.

- ▶ Inorganic acids are generally soluble in water with the release of hydrogen ions. The resulting solutions have pH's of less than 7.0.
- Inorganic acids neutralise chemical bases (for example: amines and inorganic hydroxides) to form salts neutralisation can generate dangerously large amounts of heat in small spaces
- The dissolution of inorganic acids in water or the dilution of their concentrated solutions with additional water may generate significant heat.
- The addition of water to inorganic acids often generates sufficient heat in the small region of mixing to cause some of the water to boil explosively. The resulting "bumping" can spatter the acid.
- Inorganic acids react with active metals, including such structural metals as aluminum and iron, to release hydrogen, a flammable gas.
- Inorganic acids can initiate the polymerisation of certain classes of organic compounds.
- Inorganic acids react with cyanide compounds to release gaseous hydrogen cyanide.
- Inorganic acids generate flammable and/or toxic gases in contact with dithiocarbamates, isocyanates, mercaptans, nitriles, nitriles, sulfides, and strong reducing agents. Additional gas-generating reactions occur with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), and even
- Acids often catalyse (increase the rate of) chemical reactions.

Chemwatch: **9-248552** Page **6** of **25**

Catalogue number: ICP-200.7-5

Version No: 2.2

EPA 200.7 Cal Std 5

Issue Date: **06/03/2017** Print Date: **06/03/2017**

WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.

- ► The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- ▶ Avoid reaction with borohydrides or cyanoborohydrides

Salts of inorganic fluoride:

- react with water forming acidic solutions.
- reactive with boron, bromine pentafluoride,bromine trifluoride, calcium disilicide, calcium hydride, oxygen difluoride, platinum, potassium.
- in aqueous solutions are incompatible with sulfuric acid, alkalis, ammonia, aliphatic amines, alkanolamines, alkylene oxides, amides, epichlorohydrin, isocyanates, nitromethane, organic anhydrides, vinyl acetate.
- ▶ corrode metals in presence of moisture
- ▶ may be incompatible with glass and porcelain
- ▶ Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.

Hydrogen fluoride:

- reacts violently with strong oxidisers, acetic anhydride, alkalis, 2-aminoethanol, arsenic trioxide (with generation of heat), bismuthic acid, calcium oxide, chlorosulfonic acid, cyanogen fluoride, ethylenediamine, ethyleneimine, fluorine gas reacts vigorously with a 50% hydrofluoric acid solution and may burst into flame), nitrogen trifluoride, N-phenylazopiperidine, oleum, oxygen difluoride, phosphorus pentoxide, potassium permanganate, potassium tetrafluorosilicate(2-), beta-propiolactone, propylene oxide, sodium, sodium tetrafluorosilicate, sulfuric acid, vinyl acetate
- reacts (possibly violently) with aliphatic amines, alcohols, alkanolamines, alkylene oxides, aromatic amines, amides, ammonia, ammonium hydroxide, epichlorohydrin, isocyanates, metal acetylides, metal silicides, methanesulfonic acid, nitrogen compounds, organic anhydrides, oxides, silicon compounds, vinylidene fluoride
- attacks glass and siliceous materials, concrete, ceramics, metals (flammable hydrogen gas may be produced), metal alloys, some plastics, rubber coatings, leather, and most other materials with the exception of lead, platinum, polyethylene, wax.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
US OSHA Permissible Exposure Levels (PELs) - Table Z1	aluminium	Aluminum, metal	15 mg/m3	Not Available	Not Available	Total dust; (as Al)
US OSHA Permissible Exposure Levels (PELs) - Table Z1	aluminium	Aluminum, metal- Respirable fraction	5 mg/m3	Not Available	Not Available	(as Al)
US NIOSH Recommended Exposure Limits (RELs)	aluminium	Aluminium, Aluminum metal, Aluminum powder, Elemental aluminum	10 (total), 5 (resp) mg/m3	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	antimony	Antimony metal, Antimony powder, Stibium	0.5 mg/m3	Not Available	Not Available	[*Note: The REL also applies to other antimony compounds (as Sb).]
US NIOSH Recommended Exposure Limits (RELs)	arsenic	Arsenic metal: Arsenia	Not Available	Not Available	0.002 mg/m3	Ca See Appendix A
US NIOSH Recommended Exposure Limits (RELs)	beryllium	Beryllium metal: Beryllium	Not Available	Not Available	0.0005 mg/m3	Ca See Appendix A
US OSHA Permissible Exposure Levels (PELs) - Table Z1	cadmium	Cadmium	0.005 mg/m3	Not Available	Not Available	see 1910.1027;(as Cd)
US NIOSH Recommended Exposure Limits (RELs)	cadmium	Cadmium metal: Cadmium	0.01 mg/m3	Not Available	Not Available	Ca See Appendix A [*Note: The REL applies to all Cadmium compounds (as Cd).]
US ACGIH Threshold Limit Values (TLV)	cadmium	Cadmium	Not Available	Not Available	Not Available	TLV® Basis: Kidney dam; BEI
US NIOSH Recommended Exposure Limits (RELs)	chromium	Chrome, Chromium	0.5 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Levels (PELs) - Table Z1	cobalt	Cobalt metal, dust, and fume	0.1 mg/m3	Not Available	Not Available	(as Co)
US NIOSH Recommended Exposure Limits (RELs)	cobalt	Cobalt metal dust, Cobalt metal fume	0.05 mg/m3	Not Available	Not Available	TLV® Basis: Pneumonitis
US ACGIH Threshold Limit Values (TLV)	cobalt	Hard metals containing Cobalt and Tungsten carbide, as Co	0.005 mg/m3	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	copper	Copper metal dusts, Copper metal fumes	1 mg/m3	Not Available	Not Available	[*Note: The REL also applies to other copper compounds (as Cu) except Copper fume.]
US ACGIH Threshold Limit Values (TLV)	copper	Copper - Fume, as Cu	0.2 mg/m3	Not Available	Not Available	TLV® Basis: Irr; GI; metal fume fever; BEI
US ACGIH Threshold Limit Values (TLV)	copper	Copper - Dusts and mists, as Cu	1 mg/m3	Not Available	Not Available	TLV® Basis: Irr; GI; metal fume fever; BEI
US NIOSH Recommended Exposure Limits (RELs)	lead	Lead metal, Plumbum	0.050 mg/m3	Not Available	Not Available	See Appendix C [*Note: The REL also applies to other lead compounds (as Pb) see Appendix C.]
US OSHA Permissible Exposure Levels (PELs) - Table Z1	mercury (elemental)	Mercury (vapor)	Hg Vapor: 0.05 mg/m3	Not Available	0.1 mg/m3	See Table Z-2;(as Hg)

Page **7** of **25**

Issue Date: 06/03/2017 Catalogue number: ICP-200.7-5 Print Date: 06/03/2017 EPA 200.7 Cal Std 5 Version No: 2.2

US OSHA Permissible Exposure Levels (PELs) - Table Z2	mercury (elemental)	Mercury	Not Available	Not Available	Other:0.1 mg/m3	(Z37.8–1971)
US NIOSH Recommended Exposure Limits (RELs)	mercury (elemental)	Mercury metal: Colloidal mercury, Metallic mercury, Quicksilver	Not Available	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	molybdenum	Molybdenum metal	0.5 mg/m3	Not Available	Not Available	See Appendix D
US ACGIH Threshold Limit Values (TLV)	molybdenum	Molybdenum, as Mo	Not Available	Not Available	Not Available	TLV® Basis: LRT irr
US NIOSH Recommended Exposure Limits (RELs)	nickel	Nickel metal: Elemental nickel, Nickel catalyst	0.015 mg/m3	Not Available	Not Available	Ca See Appendix A [*Note: The REL does not apply to Nickel carbonyl.]
US ACGIH Threshold Limit Values (TLV)	nickel	Nickel and inorganic compounds including Nickel subsulfide, as Ni - Elemental	1.5 mg/m3	Not Available	Not Available	TLV® Basis: Dermatitis; pneumoconiosis
US NIOSH Recommended Exposure Limits (RELs)	selenium	Elemental selenium, Selenium alloy	0.2 mg/m3	Not Available	Not Available	[*Note: The REL also applies to other selenium compounds (as Se) except Selenium hexafluoride.]
US NIOSH Recommended Exposure Limits (RELs)	silver	Silver metal: Argentum	0.01 mg/m3	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	tin	Metallic tin, Tin flake, Tin metal, Tin powder	2 mg/m3	Not Available	Not Available	[*Note: The REL also applies to other inorganic tin compounds (as Sn) except tin oxides.]
US OSHA Permissible Exposure Levels (PELs) - Table Z1	nitric acid	Nitric acid	5 mg/m3 / 2 ppm	10 mg/m3 / 4 ppm	Not Available	TLV® Basis: URT & eye irr; dental erosion
US NIOSH Recommended Exposure Limits (RELs)	nitric acid	Aqua fortis, Engravers acid, Hydrogen nitrate, Red fuming nitric acid (RFNA), White fuming nitric acid (WFNA)	5 mg/m3 / 2 ppm	4 ppm	Not Available	Not Available
US ACGIH Threshold Limit Values (TLV)	nitric acid	Nitric acid	2 ppm	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Levels (PELs) - Table Z1	hydrofluoric acid	Hydrogen fluoride	2.5 mg/m3 / 3 ppm	Not Available	5 mg/m3 / 6 ppm	See Table Z-2;(as F)
US OSHA Permissible Exposure Levels (PELs) - Table Z2	hydrofluoric acid	Hydrogen fluoride	3 ppm	Not Available	2 ppm	(Z37.28–1969)
US NIOSH Recommended Exposure Limits (RELs)	hydrofluoric acid	Anhydrous hydrogen fluoride; Aqueous hydrogen fluoride (i.e., Hydrofluoric acid); HF-A	0.5 ppm	Not Available	Not Available	[15-minute]
US ACGIH Threshold Limit Values (TLV)	hydrofluoric acid	Hydrogen fluoride, as F	Not Available	Not Available	Not Available	TLV® Basis: URT, LRT, skin, & eye irr; fluorosis; BEI

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
antimony	Antimony	1.5 mg/m3	13 mg/m3	80 mg/m3
barium	Barium	1.5 mg/m3	180 mg/m3	1,100 mg/m3
beryllium	Beryllium	0.0023 mg/m3	Not Available	Not Available
boron	Boron	1.9 mg/m3	21 mg/m3	130 mg/m3
cadmium	Cadmium	Not Available	Not Available	Not Available
chromium	Chromium	1.5 mg/m3	17 mg/m3	99 mg/m3
cobalt	Cobalt	0.18 mg/m3	2 mg/m3	20 mg/m3
copper	Copper	3 mg/m3	33 mg/m3	200 mg/m3
iron	Iron	3.2 mg/m3	35 mg/m3	150 mg/m3
lead	Lead	0.15 mg/m3	120 mg/m3	700 mg/m3
lithium carbonate	Lithium carbonate	0.44 mg/m3	4.8 mg/m3	100 mg/m3
manganese(II) acetate tetrahydrate	Acetic acid, manganese(2+) salt, tetrahydrate	13 mg/m3	22 mg/m3	740 mg/m3
manganese(II) acetate tetrahydrate	Acetic acid, manganese(II) salt (2:1)	9.4 mg/m3	16 mg/m3	96 mg/m3
mercury (elemental)	Mercury vapor	0.15 mg/m3	Not Available	Not Available
molybdenum	Molybdenum	30 mg/m3	330 mg/m3	2,000 mg/m3
nickel	Nickel	4.5 mg/m3	50 mg/m3	99 mg/m3
ammonium phosphate, monobasic	Ammonium dihydrogen phosphate; (Monoammonium phosphate)	17 mg/m3	190 mg/m3	1,100 mg/m3
selenium	Selenium	0.6 mg/m3	6.6 mg/m3	40 mg/m3
ammonium fluorosilicate	Ammonium hexafluorosilicate; (Ammonium silicofluoride)	12 mg/m3	130 mg/m3	780 mg/m3
silver	Silver	0.3 mg/m3	170 mg/m3	990 mg/m3
strontium	Strontium	30 mg/m3	330 mg/m3	2,000 mg/m3
thallium	Thallium	0.06 mg/m3	13 mg/m3	20 mg/m3

Catalogue number: ICP-200.7-5

EPA 200.7 Cal Std 5

Version No: **2.2**

tin	Tin	6 mg/m3	67 mg/m3	400 mg/m3	
ammonium metavanadate	Ammonium vanadate; (Ammonium vanadium oxide; Ammonium metavanadate)	0.01 mg/m3	0.11 mg/m3	80 mg/m3	
zinc	Zinc	6 mg/m3	21 mg/m3	120 mg/m3	
nitric acid	Nitric acid	Not Available	Not Available	Not Available	
hydrofluoric acid	Hydrogen fluoride; (Hydrofluoric acid)	Not Available	Not Available	Not Available	
Ingredient	Original IDLH	Revised IDLH			
aluminium	Not Available Not Available				
antimony	80 mg/m3	50 mg/m3	50 mg/m3		

Ingredient	Original IDLH	Revised IDLH
aluminium	Not Available	Not Available
antimony	80 mg/m3	50 mg/m3
arsenic	100 mg/m3	5 mg/m3
barium	1,100 mg/m3	50 mg/m3
beryllium	10 mg/m3	4 mg/m3
boron	Not Available	Not Available
cadmium	50 mg/m3 / 9 mg/m3	9 mg/m3 / 9 [Unch] mg/m3
chromium	N.E. / N.E.	250 mg/m3
cobalt	20 mg/m3	20 [Unch] mg/m3
copper	N.E. / N.E.	100 mg/m3
iron	Not Available	Not Available
lead	700 mg/m3	100 mg/m3
lithium carbonate	Not Available	Not Available
manganese(II) acetate tetrahydrate	N.E. / N.E.	500 mg/m3
mercury (elemental)	10 mg/m3 / 28 mg/m3	2 mg/m3 / 10 mg/m3
molybdenum	N.E. / N.E.	5,000 mg/m3
nickel	N.E. / N.E.	10 mg/m3
ammonium phosphate, monobasic	Not Available	Not Available
selenium	Unknown mg/m3 / Unknown ppm	1 mg/m3
ammonium fluorosilicate	Not Available	Not Available
silver	N.E. / N.E.	10 mg/m3
strontium	Not Available	Not Available
thallium	Not Available	Not Available
tin	Unknown mg/m3 / 400 mg/m3 / Unknown ppm	25 mg/m3 / 100 mg/m3
ammonium metavanadate	Not Available	Not Available
zinc	Not Available	Not Available
nitric acid	100 ppm	25 ppm
hydrofluoric acid	30 ppm	30 [Unch] ppm
water	Not Available	Not Available

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Issue Date: 06/03/2017

Print Date: 06/03/2017

Chemwatch: 9-248552 Page 9 of 25

Catalogue number: ICP-200.7-5

Version No: 2.2

EPA 200.7 Cal Std 5

Issue Date: 06/03/2017 Print Date: 06/03/2017

Lower end of the range Upper end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

- Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under
- Chemical goggles whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
 - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed

See Hand protection below Hands/feet protection Body protection See Other protection below Nother protection PVC gloves Not Available PVC gloves When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. See Other protection below Noter protection PVC Apron. PVC Apron. PVC protective suit may be required if exposure severe. Equivalent Protection Not Available		at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]
Hands/feet protection When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. See Other protection below Other protection Other protection PVC Apron. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower.	Skin protection	See Hand protection below
Other protection PVC Apron. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower.	Hands/feet protection	
PVC Apron. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower.	Body protection	See Other protection below
Thermal hazards Not Available	Other protection	 PVC Apron. PVC protective suit may be required if exposure severe. Eyewash unit.
	Thermal hazards	Not Available

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Not Available		
Physical state	Liquid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity

See section 7

Page **10** of **25**

Catalogue number: ICP-200.7-5

antimony

Dermal (rabbit) LD50: >8300 mg/kg^[1]

Oral (rat) LD50: 100 mg/kg^[2]

Version No: 2.2

EPA 200.7 Cal Std 5

Issue Date: 06/03/2017 Print Date: 06/03/2017

Chemical stability	► Contact with alkaline material liberates heat
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOG	SICAL INFORMATION						
nformation on toxicologic	cal effects						
Inhaled	Inhalation of vapours or aerosols (mists, fumes), generated by the material du The material can cause respiratory irritation in some persons. The body's res Corrosive acids can cause irritation of the respiratory tract, with coughing, che nausea and weakness. Bronchial and alveolar exudate are apparent in animals exposed to molybdent fatty changes in liver and kidney. Acute effects of fluoride inhalation include irritation of nose and throat, coughis bleed. Acute inhalation of hydrogen fluoride (hydrofluoric acid) vapours causes seve water in the lungs, and may cause death. The above irritation occurs even wit irritating odour, that can be detected at concentrations of about 0.04 parts pe severe inflammation and water buildup in the lungs (which may occur with 1 h intolerable, but a vapour concentration of 30 parts per million is considered as It is estimated that the lowest lethal concentration for a 5-minute human expos either skin contact or inhalation may lead to low levels of calcium and magnes suggests that repeated exposure produces liver and kidney damage.	ponse to such irritation can cause further than the policy of the policy	rther lung damage. ie. There may be dizziness, headache, may produce bronchial irritation and moderate ite over-exposure may even cause nose t, delayed fever, bluing of the extremities and influoride. Hydrogen fluoride has a strong on of the throat, nose and lungs, leading to ation of 10 parts per million is regarded as ealth. ge of 50 to 250 parts per million. Exposure by				
Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Molybdenum, an essential trace element, can in large doses hamper growth and cause loss of appetite, listlessness and diarrhoea. Anaemia also occurs, and other symptoms include greying of hair, shrinking of the testicles, reduced fertility and milk production, shortness of breath, incoordination and irritation of the mucous membranes. Fluoride causes severe loss of calcium in the blood, with symptoms appearing several hours later including painful and rigid muscle contractions of the limbs Cardiovascular collapse can occur and may cause death with increased heart rate and other heart rhythm irregularities.						
Skin Contact	Skin contact with the material may be harmful; systemic effects may result following considered non-harmful, slight irritation may result from contact becan itching and skin reaction and inflammation. Skin contact with acidic corrosives may result in pain and burns; these may be Contact of the skin with liquid hydrofluoric acid (hydrogen fluoride) may cause more serious burns, ulceration, blue-gray discoloration, and necrosis may one Fluorides are easily absorbed through the skin and cause death of soft tissue beneath skin. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, of the material and ensure that any external damage is suitably protected.	owing absorption. use of the abrasive nature of the alur deep with distinct edges and may he severe burns, erythema, and swelli cur. Solutions of hydrofluoric acid, as and erode bone. Healing is delayed a	ninium oxide particles. Thus it may cause eal slowly with the formation of scar tissue. ng, vesiculation, and serious crusting. With dilute as 2%, may cause severe skin burns. and death of tissue may continue to spread				
Еуе	If applied to the eyes, this material causes severe eye damage. Direct eye contact with acid corrosives may produce pain, tears, sensitivity to completely. Animal testing showed that a 20% solution of hydrofluoric acid (hydrogen fluo and ischaemia of the conjunctiva. Swelling of the stroma of the cornea occurr eye.	ride) in water caused immediate dam	nage in the form of total clouding of the lens				
Chronic	Long-term exposure to respiratory irritants may result in airways disease, invo Substance accumulation, in the human body, may occur and may cause some Animal testing shows long term exposure to aluminium oxides may cause lun the greater the tendencies of causing harm. High levels of molybdenum can cause joint problems in the hands and feet wit elevated levels of enzymes and cause over-activity of the thyroid gland. Repeated or prolonged exposure to acids may result in the erosion of teeth, sand inflammation of lung tissue often occurs. Extended exposure to inorganic fluorides causes fluorosis, which includes significant appetite, diarrhoea or constipation, weight loss, anaemia, weakness and generally discontinuation of the protection and correction in the mouth and throat and blood calcium levels are dangerously reduced.	concern following repeated or long-tog disease and cancer, depending on h pain and lameness. Molybdenum conswelling and/or ulceration of mouth limited properties of joint pain and stiffness, tooth depend unwellness. There may also be from the properties of joint pain and stiffness.	erm occupational exposure. the size of the particle. The smaller the size, ompounds can also cause liver changes with ning. Irritation of airways to lung, with cough, iscolouration, nausea and vomiting, loss of requent urination and thirst.				
EPA 200.7 Cal Std 5	TOXICITY Not Available	IRRITATION Not Available					
aluminium	TOXICITY Oral (rat) LD50: >2000 mg/kg ^[1]		RITATION ot Available				
	TOXICITY		IRRITATION				

Not Available

Page **11** of **25** Issue Date: 06/03/2017 Catalogue number: ICP-200.7-5 Print Date: 06/03/2017 EPA 200.7 Cal Std 5 Version No: 2.2

Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances
ARSENIC	Arsenic compounds are classified by the European Union as toxic by inhalation and ingestion and toxic to aquatic life and long lasting in the environment. Tumorigenic - Carcinogenic by RTECS criteria.
BERYLLIUM	33nix&11b WARNING: Beryllium and compounds are classified by IARC as Group 1 - CARCINOGENIC TO HUMANS Beryllium oxide furne is very toxic to the respiratory tract, lungs and skin and is quick acting. Mutation DNA damage Human Tumorigenic - neoplastic by RTECS criteria.
BORON	Elemental boron produces lower foetal body weight in rats.
CHROMIUM	On skin and inhalation exposure, chromium and its compounds (except hexavalent) can be a potent sensitiser, as particulates. Gastrointestinal tumours, lymphoma, musculoskeletal tumours and tumours at site of application recorded.
COBALT	Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Attention should be paid to atopic diathesis, characterised by increased susceptibility to nasal inflammation, asthma and eczema. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved.
COPPER	for copper and its compounds (typically copper chloride): Acute toxicity: There are no reliable acute oral toxicity results available. WARNING: Inhalation of high concentrations of copper fume may cause "metal fume fever", an acute industrial disease of short duration. tiredness, influenza like respiratory tract irritation with fever.
LEAD	WARNING: Lead is a cumulative poison and has the potential to cause abortion and intellectual impairment to unborn children of pregnant workers.
LITHIUM CARBONATE	Goitrogenic: Goitrogens are substances that suppress the function of the thyroid gland by interfering with iodine uptake, which can, as a result, cause an enlargement of the thyroid (a goitre). Lacrimation, altered sleep times, hallucinations, distorted perception, toxic psychosis, excitement, ataxia, respiratory depression, allergic dermatitis (after sytemic administration), foetoxicity and foetolethality and specific development abnormalities recorded. Non-sensitising guinea pig * * FMC SDS
MERCURY (ELEMENTAL)	Animal studies have shown that mercury may be a reproductive effector.
NICKEL	Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen [National Toxicology Program: U.S. Dep. Oral (rat) TDLo: 500 mg/kg/5D-I Inhalation (rat) TCLo: 0.1 mg/m3/24H/17W-C
THALLIUM	Structural changes in nerves and sheath, changes in extraocular muscles, hair loss recorded
ZINC	The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.
NITRIC ACID	For acid mists, aerosols, vapours Test results suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to about 6.5. The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Oral (?) LD50: 50-500 mg/kg * [Various Manufacturers]
HYDROFLUORIC ACID	(liver and kidney damage) [Manufacturer] for hydrogen fluoride (as vapour)
ALUMINIUM & BARIUM & CHROMIUM & MOLYBDENUM & AMMONIUM PHOSPHATE, MONOBASIC & STRONTIUM & TIN & HYDROFLUORIC ACID & WATER	No significant acute toxicological data identified in literature search.
ARSENIC & BERYLLIUM	WARNING: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS.
BARIUM & BORON & LITHIUM CARBONATE & MANGANESE(II) ACETATE TETRAHYDRATE & MERCURY (ELEMENTAL) & AMMONIUM PHOSPHATE, MONOBASIC & AMMONIUM METAVANADATE & NITRIC ACID & HYDROFLUORIC ACID	Asthma-like symptoms may continue for months or even years after exposure to the material ends.
BERYLLIUM & COBALT & NICKEL	The following information refers to contact allergens as a group and may not be specific to this product.
BERYLLIUM & CHROMIUM	Tenth Annual Report on Carcinogens: Substance known to be Carcinogenic [National Toxicology Program: U.S. Dep.
CHROMIUM & SELENIUM	The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans.
COBALT & NICKEL	WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.
NITRIC ACID & HYDROFLUORIC ACID	The material may produce severe irritation to the eye causing pronounced inflammation.
NITRIC ACID & HYDROFLUORIC ACID	The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.
Acute Toxicity	✓ Carcinogenicity

Version No: 2.2

EPA 200.7 Cal Std 5

Issue Date: 06/03/2017 Print Date: 06/03/2017

Skin Irritation/Corrosion Reproductivity 0 Serious Eye 0 STOT - Single Exposure 0 Damage/Irritation Respiratory or Skin 0 0 STOT - Repeated Exposure sensitisation Mutagenicity 0 **Aspiration Hazard** 0

Legend:

X − Data available but does not fill the criteria for classification
 ✓ − Data available to make classification

O - Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

EPA 200.7 Cal Std 5	ENDPOINT		TEST DURATION (HR)		SPECIES	VALUE		SO	URCE
LFA 200.7 Gai Stu 3	Not Applicable	Not Applicable Not Applicable			Not Applicable	Not Appl	icable	Not	Applicable
	ENDPOINT	TES	T DURATION (HR)	SPE	CIES		VALUE		SOURCI
	LC50	96	()	Fish			0.078-0.108n	ng/L	2
	EC50	48		Crus	tacea		0.7364mg/L		2
aluminium	EC50	96			e or other aquatic plants		0.0054mg/L		2
	BCF	360			e or other aquatic plants		9mg/L		4
	EC50	120		Fish			0.000051mg/	L	5
	NOEC	72		Alga	e or other aquatic plants		>=0.004mg/l		2
	ENDPOINT	TES	T DURATION (HR)	SF	PECIES		VALUE		SOURCE
	LC50	96		Fi	sh		0.93mg/L	-	2
antimony	EC50	48		Cı	ustacea		1mg/L		2
antimony	EC50	72		Al	gae or other aquatic plants		>2.4mg/l	-	2
	EC50	96		Cı	ustacea		0.5mg/L		2
	NOEC	720		Fi	sh		>0.0075r	ng/L	2
	ENDPOINT	TE	ST DUDATION (HD)		SPECIES		VALU	E	SOURCE
arsenic	LC50	96	ST DURATION (HR)		Fish		9.9mg/L		4
	EC50	336			Algae or other aquatic plants		0.63mg/L		4
	NOEC	336			Algae or other aquatic plants		<0.75		4
	NOEC	330			3		<0.75	ng/L	4
	ENDPOINT	TES	T DURATION (HR)	SP	ECIES		VALUE		SOURCE
	LC50	96		Fis	h		>500mg/L		4
	EC50	96		Alg	ae or other aquatic plants		26mg/L		4
barium	BCF	24		Cri	ustacea		0.000002r	ng/L	4
	EC50	240		Alg	ae or other aquatic plants		8.10306m	g/L	4
	NOEC	48		Cr	ıstacea		68mg/L		4
	ENDPOINT		TEST DURATION (HR)		SPECIES				SOURCE
beryllium	EC50		96		Fish).19mg/L	5	
	NOEC		48		Crustacea).25mg/L	4	1
	ENDPOINT	TES	ST DURATION (HR)		SPECIES			E	SOURCE
	LC50	96		1	ish		74mg	/L	2
	EC50	48		(Crustacea		230mg/L		5
boron	EC50	72		,	Algae or other aquatic plan	ts	54mg	/L	2
	BCF	336			Algae or other aquatic plan		8.5mg		4
	EC50	336			Algae or other aquatic plan		8.5mg		4
	NOEC	576			Fish		0.001		5
							MALLET		COLIDAR
cadmium	ENDPOINT LC50	TES	T DURATION (HR)	SPE Fish			VALUE 0.001mg/L		SOURCE 4

Chemwatch: 9-248552 Catalogue number: ICP-200.7-5 Version No: 2.2

EPA 200.7 Cal Std 5

Issue Date: **06/03/2017**Print Date: **06/03/2017**

	EC50	48	Crustace	ea	0.0	033mg/L	5
	EC50	72	Algae or	other aquatic plants	0.0)18mg/L	2
	BCF	960	Fish		500	0mg/L	4
	EC50	336	Crustace	ea	0.0	0065mg/L	5
	NOEC	168	Fish		0.0	0001821mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPEC	CIES		VALUE	SOURCE
	LC50	96	Fish			13.9mg/L	4
	EC50	48	Crusta	acea		0.0225mg/L	5
chromium	EC50	72	Algae	or other aquatic plants		0.104mg/L	4
	BCF	1440	Algae	or other aquatic plants		0.0495mg/L	4
	EC50	48	Crusta	acea		0.0245mg/L	5
	NOEC	672	Fish			0.00019mg/L	4
	ENDPOINT	TEST DUD ATION (UD)	SPEC	OIEC		VALUE	SOURCE
	LC50	TEST DURATION (HR)		CIES			2
		96	Fish	4		1.406mg/L	
aabalt	EC50	48	1	tacea		>0.89mg/L	2
cobalt	BCF	72 1344		e or other aquatic plants		0.144mg/L	4
			Fish			0.99mg/L	
	EC50	70	-	e or other aquatic plants		0.02mg/L	2
	NOEC	168	Algae	e or other aquatic plants		0.0018mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECI	ES .		VALUE	SOURCE
	LC50	96	Fish	Fish 0		0.0028mg/L	2
	EC50	48		Crustacea		0.001mg/L	5
copper	EC50	72		or other aquatic plants		0.013335mg/L	4
	BCF	960	Fish	· · ·		200mg/L	4
	EC50	96	Crusta	cea		0.001mg/L	5
	NOEC	96				0.0008mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIE	ES	V	ALUE	SOURCE
	LC50	96	Fish		0	.05mg/L	2
iron	EC50	96	Algae o	or other aquatic plants	3	.7mg/L	4
	BCF	24	Crustao	cea	0	.0000002mg/L	4
	EC50	504	Crustad	cea	4	.49mg/L	2
	NOEC	504	Fish		0	.52mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPEC	HES		VALUE	SOURCE
	LC50	96	Fish	3		0.0079mg/L	2
	EC50	48		acea		0.0079fflg/L 0.029mg/L	2
lead	EC50	72		Crustacea Algae or other aquatic plants		0.029ffg/L 0.0205mg/L	2
iodu	BCFD	8	Fish	2. 2010) aquatio pianto		4.324mg/L	4
	EC50	48		or other aquatic plants		0.0217mg/L	2
	NOEC	672	Fish	2. Sailor aquatio piarito		0.00003mg/L	4
	1,020	VI.E.	1 1311			5.00000TIIg/L	7
	ENDPOINT	TEST DURATION (HR)	SPECI	ES		VALUE	SOURCE
	LC50	96	Fish			5.69mg/L	2
lithium aark sust	EC50	48	Crusta	cea		6.24mg/L	2
lithium carbonate	EC50	96	Algae	or other aquatic plants		4630.937mg/L	3
	EC50	48	Crusta	cea	:	33.2mg/L	2
	NOEC	816	Fish		:	2.87mg/L	2
manganese(II) acetate	ENDPOINT	TEST DURATION (HR)		SPECIES	VALUE		SOURCE
tetrahydrate	Not Applicable	Not Applicable		Not Applicable	Not Applica		Not Applicable

EPA 200.7 Cal Std 5

Issue Date: **06/03/2017**Print Date: **06/03/2017**

	NOEC	480		Crustace	ea	0.	.00031r	ma/L	2	
	EC50	48		Crustace	еа	0.	.00024r	mg/L	4	
	BCF	336		Crustace	ea	0.	.02mg/l	L	4	
silver	EC50	96		Algae or	other aquatic plants	0.	0.001628837mg/L		4	
	EC50	48		Crustace	ea	0.	0.00024mg/L		4	
	LC50	96	. DORAHON (HIN)	Fish	•		.00148r	mg/L	2	JONGE
	ENDPOINT	TE6.	T DURATION (HR)	SPECIE	S	W	ALUE		90	DURCE
	Not Applicable		Not Applicable		Not Applicable	Not Appli	icable		Not Applicat	ble
ammonium fluorosilicate	ENDPOINT		TEST DURATION (HR)		SPECIES	VALUE			SOURCE	
	NOEC	72		Algae	or other aquatic plants		0.000547mg/L		2	
	EC50	96		Algae	or other aquatic plants		0.355	5mg/L	2	
	BCF	504		Crusta	icea		0.711	mg/L	4	
selenium	EC50	72	72		or other aquatic plants			0173mg/L	2	
	EC50	48	48		icea			603mg/L	2	
	LC50	96		Fish			>0.02	262mg/L	2	
	ENDPOINT	TES	T DURATION (HR)	SPEC	IES		VALU	UE	so	URCE
	NOEC	72		Alga	e or other aquatic plants		3	3.57mg/L	2	
monopasic	EC50	72			e or other aquatic plants			>97.1mg/L	2	
ammonium phosphate, monobasic	EC50	72			e or other aquatic plants			97.1mg/L	2	
	LC50	96	. ,		Fish		>85.9mg/L		2	
	ENDPOINT	TEST DURATION (HR)		SPE	SPECIES		V	/ALUE	SOL	URCE
	NOEC	72		Algae	or other aquatic plants		0.003	5mg/L	2	
	EC50	720		Crusta	cea		0.0062	2mg/L	2	
	BCF	1440		Algae o	or other aquatic plants		0.47m	ng/L	4	
nickel	EC50	72		Algae	or other aquatic plants		0.0407	7mg/L	2	
	EC50	48		Crusta	cea		0.013r	mg/L	5	
	LC50	96		Fish			0.0000	0475mg/L	4	
	ENDPOINT	TES	T DURATION (HR)	SPECI	ES		VALU	ΙE	so	URCE
	NOEC	672		Cru	stacea		(0.67mg/L	2	
	EC50	336		-	ae or other aquatic plants			64mg/L	4	
molybdenum	BCF	336			ae or other aquatic plants			64mg/L	4	
	EC50	72			' ae or other aquatic plants	<u> </u>		289.2mg/L	2	
	LC50	96	zo.a.ron (im)	Fish				609.1mg/L	2	J UL
	ENDPOINT	TE	ST DURATION (HR)	SDE	ECIES		\	VALUE	SOL	URCE
				1.300			1 2.3	. 3-	1-	
	NOEC	2688	3	Crust	acea		_	0025mg/L	2	
	EC50	240		Fish			_	003mg/L	5	
mercury (elementar)	BCF	720		Fish	or other aquatic plants			02311g/L 01mg/L	4	
mercury (elemental)	EC50	72			or other aquatic plants		_	025mg/L	4	
	LC50 EC50	96 48		Fish Crust	2002			04mg/L 035mg/L	5	
	ENDPOINT		ST DURATION (HR)	SPEC	,ilo			LUE		URCE

Page **15** of **25**

Catalogue number: ICP-200.7-5 EPA 200.7 Cal Std 5
Version No: 2.2

Issue Date: 06/03/2017 Print Date: 06/03/2017

	NOEC	720	Fish			0.04mg/L	5	
	ENDPOINT	TEST DURATION (HR)	SPECIES			VALUE	SOURCE	
41	LC50	96	Fish			>0.0124mg/L	2	
	EC50	48	Crustacea			0.00018mg/L	5	
tin	EC50	72	Algae or othe	er aquatic plants		>0.0192mg/L	2	
	EC50	72	Algae or othe	er aquatic plants		>0.0192mg/L	2	
	NOEC	168	Crustacea			<0.005mg/L	2	
	ENDPOINT	TEST DURATION (HR)	SPECIES			VALUE	SOURCE	
	LC50	96	Fish			0.693mg/L	2	
	EC50	48	Crustacea			2.387mg/L	2	
nmonium metavanadate	EC50	72	Algae or oth	er aquatic plants		0.9894mg/L	2	
	EC50	72	Algae or oth	er aquatic plants		1.162mg/L	2	
	NOEC	72		er aquatic plants		0.0168mg/L	2	
	ENDPOINT	TEST DURATION (HR)	SPECIES			VALUE	SOURCE	
	LC50	96	Fish			0.00272mg/L	4	
	EC50	48	Crustacea			0.04mg/L	5	
zinc	EC50	72	Algae or other	er aquatic plants		0.106mg/L	4	
	BCF	360	Algae or other	er aquatic plants		9mg/L	4	
	EC50	120	Fish			0.00033mg/L	5	
	NOEC	336	Algae or othe	er aquatic plants		0.00075mg/L	4	
	ENDPOINT	TEST DURATION (HR)		SPECIES	VA	LUE	SOURCE	
nitric acid	NOEC	16		Crustacea		7mg/L	4	
					I			
	ENDPOINT	TEST DURATION (HR)		SPECIES	VALU	JE	SOURCE	
	LC50	96		Fish 5		/L	2	
hydrofluoric acid	EC50	48		Crustacea =		mg/L	1	
	EC50	96		Crustacea	26-48	mg/L	2	
	NOEC	504		Fish	4mg/l	-	2	
	ENDPOINT	TEST DUDATION (UD)	SPEC	CIES	VALUE		SOURCE	
water		TEST DURATION (HR)				blo		
	Not Applicable	Not Applicable	Not A	Applicable	Not Applica	DIE	Not Applicable	

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

For Fluorides: Small amounts of fluoride have beneficial effects however, excessive intake over long periods may cause dental and/or skeletal fluorosis. Fluorides are absorbed by humans following inhalation of workplace and ambient air that has been contaminated, ingestion of drinking water and foods and dermal contact. Populations living in areas with high fluoride levels in groundwater may be exposed to higher levels of fluorides in their drinking water or in beverages prepared with the water. Among these populations, outdoor labourers, people living in hot climates, and people with excessive thirst will generally have the greatest daily intake of fluorides because they consume greater amounts of water.

Atmospheric Fate: Both hydrogen fluoride and particulate fluorides will be transported in the atmosphere and deposited on land or water by wet and dry deposition. Non-volatile inorganic fluoride particulates are removed from the atmosphere via condensation or nucleation processes. Fluorides adsorbed on particulate matter in the atmosphere are generally stable and are not readily hydrolyzed, although they may be degraded by radiation if they persist in the atmosphere. Fluorine and the silicon fluorides (fluosilicates, silicofluorides) are hydrolyzed in the atmosphere to form hydrogen fluoride. Hydrogen fluoride may combine with water vapour to produce an aerosol or fog of aqueous hydrofluoric acid. Inorganic fluoride compounds, with the exception of sulfur hexafluoride, are not expected to remain in the troposphere for long periods or to migrate to the stratosphere. Estimates of the residence time of sulfur hexafluoride in the atmosphere range from 500 to several thousand years. Fluoride in aerosols can be transported over large distances by wind or as a result of atmospheric turbulence. Fluorosilicic acid and hydrofluoric acid in high aquatic concentrations such as may be found in industrial waste ponds may volatilize, releasing silicon tetrafluoride and hydrogen fluoride into the atmosphere. Soluble inorganic fluorides may also form aerosols at the air/water interface or vaporize into the atmosphere whereas undissolved species generally undergo sedimentation.

Terrestrial Fate: Soils - Atmospheric fluorides may be transported to soils and surface waters through both wet and dry deposition processes where they may form complexes and bind strongly to soil and sediment. Solubilisation of inorganic fluorides from minerals may also be enhanced by the presence of bentonite clays and humic acid. Factors that influence the mobility of inorganic fluorides in soil are pH and the formation of aluminium and calcium complexes. In more acidic soils, concentrations of inorganic fluoride were considerably higher in the deeper horizons. The low affinity of fluorides for organic material results in leaching from the more acidic surface horizon and increased retention by clay minerals and silts in the more alkaline, deeper horizons. The maximum adsorption of fluoride to soil was reported to occur at pH 5.5. In acidic soils with pH below 6, most of the fluoride is in complexes with either aluminium or iron. Fluoride in alkaline soils at pH 6.5 and above is almost completely fixed in soils as calcium fluoride, if sufficient calcium carbonate is available. Fluoride is extremely immobile in soil.

Aquatic Fate: Fresh Water: - In water, the transport and transformation of inorganic fluorides are influenced by pH, water hardness and the presence of ion-exchange materials such as clays. In natural water, fluoride forms strong complexes with aluminium in water, and fluorine chemistry in water is largely regulated by aluminium concentration and pH. Below pH 5, fluoride is almost entirely complexed with aluminium and consequently, the concentration of free F- is low. Once dissolved, inorganic fluorides remain in solution under conditions of low pH and hardness and in the presence of ion-exchange material. Sea Water - Fluoride forms stable complexes with calcium and magnesium, which are present in sea water. Calcium carbonate precipitation dominates the removal of dissolved fluoride from sea water. The residence time for fluoride in ocean sediment is calculated to be 2-3 million years.

Ecotoxicity: Fluorides have been shown to accumulate in animals that consume fluoride-containing foliage. However, accumulation is primarily in skeletal tissue and therefore, it is unlikely that fluoride will biomagnify up the food chain.

Chemwatch: 9-248552

Page 16 of 25 EPA 200.7 Cal Std 5

Version No: 2.2

Issue Date: **06/03/2017**Print Date: **06/03/2017**

For Molvbdenum:

Catalogue number: ICP-200.7-5

Environmental Fate: Molybdenum is an essential micronutrient in plants and animals. It is commonly used in the manufacture of steel alloys. Based on the high concentration of molybdenum in all analyzed waste types, the exposure of the environment to molybdenum is regarded as significant. The limited amount of data regarding its toxicity makes it impossible to evaluate the potential for adverse environmental and health effects from molybdenum exposure. Molybdenum is generally found in two oxidation states in nature, Mo(IV) and Mo(VI). In oxidizing environments, Mo(VI) dominates and it is commonly present as molybdate. Natural molybdenum contains seven isotopes. Molybdenum oxidizes at elevated temperatures.

Atmospheric Fate: Molybdenum can be deposited via dry/wet deposition; however, atmospheric exposure has been identified as a minor source to terrestrial and aquatic habitats.

Terrestrial Fate: Molybdenum is a naturally occurring substance in soil. Soil molybdenum is a potentially toxic element, but no cases have been reported of molybdenum toxicity to animals from consumption of forage grown on sludge-amended soils. Microbes are expected to transform the substance.

Aquatic Fate: Molybdenum disulfide is sparingly soluble in water but oxidizes to more soluble molybdates, which are stable in water. At pH 3-5, molybdate frequently shifts to hydrogen molybdate. Low pH molybdenum is usually adsorbed to sediment composed of clay, or other minerals that are prone to weathering. Molybdenum in the water is expected to be taken up by aquatic organisms. Concentrations of the substance in sediments are by site-specific factors like flow rate, and other factors, (e.g. organic content, pH)

Ecotoxicology: Molybdenum cause adverse effects in ruminant animals. Livestock have been injured by forage grown on soils containing the element. The substance stoxicological properties in mammals are governed, to a large extent, by its interaction with copper and sulfur; residues of molybdenum alone are not sufficient to diagnose poisoning by the substance. Domestic ruminants, especially sensitive to molybdenum poisoning, when copper and inorganic sulfate are deficient. The resistance of small laboratory animals, and wildlife, is at least 10X that of cattle. Mule deer are not adversely affected by the substance. The substance may have a negative impact on reproduction in domestic birds and there is inadequate data on its effects on waterfowl and most mammals.

For Vanadium Compounds:

Environmental Fate: Vanadium is travels through the environment via long-range transportation in the atmosphere, water, and land by natural and man-made sources, wet and dry deposition, adsorption and complexing. From natural sources, vanadium is probably in the form of less soluble trivalent mineral particles.

Atmospheric Fate: Vanadium generally enters the atmosphere as an aerosol. Natural and man-made sources of vanadium tend to release large particles that are more likely to settle near the source. Smaller particles, such as those emitted from oil-fueled power plants, have a longer residence time in the atmosphere and are more likely to be transported farther away from the site of release.

Terrestrial Fate: Soil - Transport and partitioning of vanadium in soil is influenced by pH and reduction potential. Ferric hydroxides and solid bitumens (organic) are the main carriers of vanadium in the sedimentation process. Iron acts as a carrier for trivalent vanadium and is responsible for its diffusion through molten rocks where it becomes trapped during crystallization. Vanadium is fairly mobile in neutral or alkaline soils, but its mobility decreases in acidic soils. Under oxidizing, unsaturated conditions, some mobility is observed, but under reducing, saturated conditions, vanadium is immobile. Plants - Vanadium levels in terrestrial plants are dependent upon the amount of water-soluble vanadium available in the soil as well as pH and growing conditions. The uptake of vanadium into the above-ground parts of many plants is low, although root concentrations have shown some correlation with levels in the soil. Certain legumes have been shown to be vanadium accumulators and the root nodules of these plants may contain vanadium levels three times greater than those of the surrounding soil. Fly agaric (Amanita muscaria) mushrooms are known to actively accumulate vanadium.

Aquatic Fate: Vanadium is eventually adsorbed to hydroxides or associated with organic compounds and is deposited on the sea bed. Vanadium is transported in water by solution (13%) or suspension (87%). Upon entering the ocean, vanadium is deposited to the sea bed. Only about 0.001% of vanadium entering the oceans is estimated to persist in soluble form. Sorption and biochemical processes are thought to contribute to the extraction of vanadium from sea water. Adsorption to organic matter as well as to manganese oxide and ferric hydroxide results in the precipitation of dissolved vanadium. Biochemical processes are also of importance in the partitioning from sea water to sediment.

Ecotoxicity: Some marine organisms, in particular the sea squirts, bioconcentrate vanadium very efficiently, attaining body concentrations approximately 10,000 times greater than the ambient sea water. Upon the death of the organism, the body burden adds to the accumulation of vanadium in silt. In general, marine plants and invertebrates contain higher levels of vanadium than terrestrial plants and animals. In the terrestrial environment, bioconcentration is more commonly observed amongst the lower plant phyla than in the higher, seed-producing phyla. Vanadium appears to be present in all terrestrial animals; however tissue concentrations in vertebrates are often so low that detection is difficult. The highest levels of vanadium in terrestrial mammals are generally found in the liver and skeletal tissues. No data are available regarding biomagnification of vanadium within the food chain, but human studies suggest that it is unlikely. Bioaccumulation appears to be unlikely.

Ecotoxicity:

The tolerance of water organisms towards pH margin and variation is diverse. Recommended pH values for test species listed in OECD guidelines are between 6.0 and almost 9. Acute testing with fish showed 96h-LC50 at about pH 3.5

Prevent, by any means available, spillage from entering drains or water courses.

DO NOT discharge into sewer or waterways

Persistence and degradability

•		
Ingredient	Persistence: Water/Soil	Persistence: Air
lithium carbonate	LOW	LOW
ammonium phosphate, monobasic	HIGH	HIGH
ammonium metavanadate	HIGH	HIGH
water	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
lithium carbonate	LOW (LogKOW = -0.4605)
ammonium phosphate, monobasic	LOW (LogKOW = -0.7699)
ammonium metavanadate	LOW (LogKOW = 2.229)
water	LOW (LogKOW = -1.38)

Mobility in soil

Ingredient	Mobility
lithium carbonate	HIGH (KOC = 1)
ammonium phosphate, monobasic	HIGH (KOC = 1)
ammonium metavanadate	LOW (KOC = 35.04)
water	LOW (KOC = 14.3)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

- ► Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Chemwatch: 9-248552
Catalogue number: ICP-200.7-5
Version No: 2.2

EPA 200.7 Cal Std 5

Issue Date: **06/03/2017**Print Date: **06/03/2017**

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- $\blacksquare \ \ \, \text{Where possible retain label warnings and SDS and observe all notices pertaining to the product.}$
- ► Recycle wherever possible.
- ► Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation with soda-ash or soda-lime followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant

NO

Land transport (DOT)

UN number	3264		
UN proper shipping name	Corrosive liquid, acidic, inorganic, n.o.s. (contains nitric acid and hydrofluoric acid)		
Transport hazard class(es)	Class 8 Subrisk Not Applicable		
Packing group			
Environmental hazard	Not Applicable		
Special precautions for user	Hazard Label 8 Special provisions 386, B2, IB2, T11, TP2, TP27		

Air transport (ICAO-IATA / DGR)

UN number	3264			
UN proper shipping name	Corrosive liquid, acidic, inorganic, n.o.s. * (contains nitric acid and hydrofluoric acid)			
Transport hazard class(es)	ICAO/IATA Class 8 ICAO / IATA Subrisk No ERG Code 8L	ot Applicable		
Packing group	П			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack		A3A803 855 30 L 851 1 L Y840 0.5 L	

Sea transport (IMDG-Code / GGVSee)

UN number	3264		
UN proper shipping name	CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. (contains nitric acid and hydrofluoric acid)		
Transport hazard class(es)	IMDG Class 8 IMDG Subrisk Not Applicable		
Packing group	П		
Environmental hazard	Not Applicable		

EPA 200.7 Cal Std 5

Version No: 2.2

EMS Number F-A, S-B Special provisions 274

Special precautions for user

Catalogue number: ICP-200.7-5

Transport in bulk according to Annex II of MARPOL and the IBC code

Limited Quantities 1 L

Source	Product name	Pollution Category	Ship Type
IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk	Nitric acid (70% and over) Nitric acid (less than 70%)	Y; Y	2 2

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

ALUMINIUM(7429-90-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS			
US - Alaska Limits for Air Contaminants	US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air		
US - California Permissible Exposure Limits for Chemical Contaminants	Contaminants		
US - Hawaii Air Contaminant Limits	US - Washington Permissible exposure limits of air contaminants		
US - Massachusetts - Right To Know Listed Chemicals	US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants		
US - Michigan Exposure Limits for Air Contaminants	US ACGIH Threshold Limit Values (TLV)		
US - Minnesota Permissible Exposure Limits (PELs)	US ACGIH Threshold Limit Values (TLV) - Carcinogens		
US - Oregon Permissible Exposure Limits (Z-1)	US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)		
US - Pennsylvania - Hazardous Substance List	US EPCRA Section 313 Chemical List		
US - Rhode Island Hazardous Substance List	US NIOSH Recommended Exposure Limits (RELs)		
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	US OSHA Permissible Exposure Levels (PELs) - Table Z1		

ANTIMONY(7440-36-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Alaska Limits for Air Contaminants
US - California Permissible Exposure Limits for Chemical Contaminants
US - Hawaii Air Contaminant Limits
US - Idaho - Limits for Air Contaminants
US - Massachusetts - Right To Know Listed Chemicals
US - Michigan Exposure Limits for Air Contaminants
US - Minnesota Permissible Exposure Limits (PELs)
US - Oregon Permissible Exposure Limits (Z-1)

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

- US Tennessee Occupational Exposure Limits Limits For Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

US	S - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air
Co	ontaminants
US	S - Washington Permissible exposure limits of air contaminants
119	S. Whyoming Toxic and Hazardous Substances Table 71 Limits for Air Contaminants

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

- US ACGIH Threshold Limit Values (TLV)
- US Clean Air Act Hazardous Air Pollutants US CWA (Clean Water Act) - Priority Pollutants US CWA (Clean Water Act) - Toxic Pollutants
- US NIOSH Recommended Exposure Limits (RELs) US OSHA Permissible Exposure Levels (PELs) - Table Z1
- US Toxic Substances Control Act (TSCA) Chemical Substance Inventory

ARSENIC(7440-38-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

US - Alaska Limits for Air Contaminants

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

- US California OEHHA/ARB Acute Reference Exposure Levels and Target Organs (RELs)
- US California OEHHA/ARB Chronic Reference Exposure Levels and Target Organs
- US California Permissible Exposure Limits for Chemical Contaminants
- US Hawaii Air Contaminant Limits
- US Idaho Limits for Air Contaminants
- US Massachusetts Right To Know Listed Chemicals
- US Minnesota Permissible Exposure Limits (PELs)
- US New Jersey Right to Know Special Health Hazard Substance List (SHHSL): Carcinogens
- US Pennsylvania Hazardous Substance List
- US Tennessee Occupational Exposure Limits Limits For Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants

- US Washington Permissible exposure limits of air contaminants
- US Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values
- US ACGIH Threshold Limit Values (TLV)

US EPCRA Section 313 Chemical List

- US ACGIH Threshold Limit Values (TLV) Carcinogens
- US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)
- US Clean Air Act Hazardous Air Pollutants
- US CWA (Clean Water Act) Priority Pollutants
- US CWA (Clean Water Act) Toxic Pollutants
- US EPCRA Section 313 Chemical List
- US National Toxicology Program (NTP) 14th Report Part A Known to be Human Carcinogens
- US NIOSH Recommended Exposure Limits (RELs)
- US OSHA Permissible Exposure Levels (PELs) Table Z1
- US Toxic Substances Control Act (TSCA) Chemical Substance Inventory

BARIUM(7440-39-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- US Alaska Limits for Air Contaminants
- US Hawaii Air Contaminant Limits
- US Idaho Limits for Air Contaminants
- US Massachusetts Right To Know Listed Chemicals
- US Minnesota Permissible Exposure Limits (PELs)
- US Pennsylvania Hazardous Substance List US - Rhode Island Hazardous Substance List
- US Tennessee Occupational Exposure Limits Limits For Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
- US Washington Permissible exposure limits of air contaminants
- US ACGIH Threshold Limit Values (TLV)
- US ACGIH Threshold Limit Values (TLV) Carcinogens
- US EPA Carcinogens Listing
- US EPCRA Section 313 Chemical List
- US OSHA Permissible Exposure Levels (PELs) Table Z1
- US Toxic Substances Control Act (TSCA) Chemical Substance Inventory

BERYLLIUM(7440-41-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Issue Date: 06/03/2017

Print Date: 06/03/2017

Catalogue number: ICP-200.7-5 EPA 200.7 Cal Std 5

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC

US - California - Proposition 65 - Priority List for the Development of MADLs for Chemicals

US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs

US - California Proposition 65 - No Significant Risk Levels (NSRLs) for Carcinogens

US - California Permissible Exposure Limits for Chemical Contaminants

Version No: 2.2

Monographs

Carcinogens

US - Alaska Limits for Air Contaminants

US - California Proposition 65 - Carcinogens

US - Idaho - Acceptable Maximum Peak Concentrations

US - Massachusetts - Right To Know Listed Chemicals

US - Michigan Exposure Limits for Air Contaminants

US - Minnesota Permissible Exposure Limits (PELs)

US - Oregon Permissible Exposure Limits (Z-1)

US - Oregon Permissible Exposure Limits (Z-2)

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

US - Hawaii Air Contaminant Limits

US - Idaho - Limits for Air Contaminants

Causing Reproductive Toxicity

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

Issue Date: 06/03/2017

Print Date: 06/03/2017

US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air

Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

US - Wyoming Toxic and Hazardous Substances Table Z-2 Acceptable ceiling concentration, Acceptable maximum peak above the acceptable ceiling concentration for an 8-hr shift

US ACGIH Threshold Limit Values (TLV)

US ACGIH Threshold Limit Values (TLV) - Carcinogens

US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)

US Clean Air Act - Hazardous Air Pollutants

US CWA (Clean Water Act) - Priority Pollutants

US CWA (Clean Water Act) - Toxic Pollutants

US EPA Carcinogens Listing

US EPCRA Section 313 Chemical List

US National Toxicology Program (NTP) 14th Report Part A Known to be Human Carcinogens

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Levels (PELs) - Table Z1 $\,$

US OSHA Permissible Exposure Levels (PELs) - Table Z2
US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

BORON(7440-42-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - New Jersey Right to Know - Special Health Hazard Substance List (SHHSL):

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)

US - California Permissible Exposure Limits for Chemical Contaminants

US - Hawaii Air Contaminant Limits

US - Michigan Exposure Limits for Air Contaminants

US - Oregon Permissible Exposure Limits (Z-1)

 $\ensuremath{\mathsf{US}}$ - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)

US EPA Carcinogens Listing

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

CADMIUM(7440-43-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

US - Alaska Limits for Air Contaminants

 ${\it US-California-Proposition\,65-Priority\,List\,for\,the\,Development\,of\,MADLs\,for\,Chemicals\,Causing\,Reproductive\,Toxicity}$

 $\ensuremath{\mathsf{US}}$ - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)

US - California Permissible Exposure Limits for Chemical Contaminants

US - California Proposition 65 - Carcinogens

 ${\it US-California Proposition 65-Maximum Allowable Dose Levels (MADLs)} \ for Chemicals Causing Reproductive Toxicity \\$

 ${\tt US-California\ Proposition\ 65-No\ Significant\ Risk\ Levels\ (NSRLs)\ for\ Carcinogens}$

US - California Proposition 65 - Reproductive Toxicity

US - Hawaii Air Contaminant Limits

US - Idaho - Acceptable Maximum Peak Concentrations

US - Idaho - Limits for Air Contaminants

US - Massachusetts - Right To Know Listed Chemicals

US - Michigan Exposure Limits for Air Contaminants

US - Minnesota Permissible Exposure Limits (PELs)

US - New Jersey Right to Know - Special Health Hazard Substance List (SHHSL): Carcinogens

US - Oregon Permissible Exposure Limits (Z-1)

US - Oregon Permissible Exposure Limits (Z-2)

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

 ${\it US-Wyoming Toxic and Hazardous Substances Table Z-2 Acceptable ceiling concentration, Acceptable maximum peak above the acceptable ceiling concentration for an 8-hr shift } \\$

 ${\sf US} \; {\sf ACGIH} \; {\sf Threshold} \; {\sf Limit} \; {\sf Values} \; ({\sf TLV})$

US ACGIH Threshold Limit Values (TLV) - Carcinogens

US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)

US Clean Air Act - Hazardous Air Pollutants

US CWA (Clean Water Act) - Priority Pollutants

US CWA (Clean Water Act) - Toxic Pollutants

US EPA Carcinogens Listing

US EPCRA Section 313 Chemical List

US National Toxicology Program (NTP) 14th Report Part A Known to be Human Carcinogens

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Carcinogens Listing

US OSHA Permissible Exposure Levels (PELs) - Table Z1

US OSHA Permissible Exposure Levels (PELs) - Table Z2

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

CHROMIUM(7440-47-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

US - Alaska Limits for Air Contaminants

US - California Permissible Exposure Limits for Chemical Contaminants

US - Hawaii Air Contaminant Limits

US - Idaho - Limits for Air Contaminants

US - Massachusetts - Right To Know Listed Chemicals US - Michigan Exposure Limits for Air Contaminants

US - Oregon Permissible Exposure Limits (Z-1)

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

US ACGIH Threshold Limit Values (TLV)

US ACGIH Threshold Limit Values (TLV) - Carcinogens

US Clean Air Act - Hazardous Air Pollutants

US CWA (Clean Water Act) - Priority Pollutants

US CWA (Clean Water Act) - Toxic Pollutants

US EPCRA Section 313 Chemical List
US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Levels (PELs) - Table Z1

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

COBALT(7440-48-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Version No: 2.2

Page 20 of 25

EPA 200.7 Cal Std 5

Issue Date: 06/03/2017 Catalogue number: ICP-200.7-5 Print Date: 06/03/2017

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs US - Alaska Limits for Air Contaminants US - California Permissible Exposure Limits for Chemical Contaminants US - California Proposition 65 - Carcinogens US - Hawaii Air Contaminant Limits US - Idaho - Limits for Air Contaminants US - Massachusetts - Right To Know Listed Chemicals US - Michigan Exposure Limits for Air Contaminants US - Minnesota Permissible Exposure Limits (PELs) US - New Jersey Right to Know - Special Health Hazard Substance List (SHHSL): Carcinogens US - Oregon Permissible Exposure Limits (Z-1) US - Pennsylvania - Hazardous Substance List US - Rhode Island Hazardous Substance List US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

COPPER(7440-50-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Alaska Limits for Air Contaminants

US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

US - California Permissible Exposure Limits for Chemical Contaminants

US - Hawaii Air Contaminant Limits

US - Idaho - Limits for Air Contaminants

US - Massachusetts - Right To Know Listed Chemicals

US - Michigan Exposure Limits for Air Contaminants

US - Minnesota Permissible Exposure Limits (PELs)

US - Oregon Permissible Exposure Limits (Z-1)

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

US ACGIH Threshold Limit Values (TLV)

US ACGIH Threshold Limit Values (TLV) - Carcinogens

US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)

US Clean Air Act - Hazardous Air Pollutants

US EPCRA Section 313 Chemical List

US National Toxicology Program (NTP) 14th Report Part B.

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Levels (PELs) - Table Z1

US Priority List for the Development of Proposition 65 Safe Harbor Levels - No Significant Risk Levels (NSRLs) for Carcinogens and Maximum Allowable Dose Levels (MADLs) for

Chemicals Causing Reproductive Toxicity

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

US ACGIH Threshold Limit Values (TLV)

US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)

US CWA (Clean Water Act) - Priority Pollutants

US CWA (Clean Water Act) - Toxic Pollutants

US EPA Carcinogens Listing

US EPCRA Section 313 Chemical List

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Levels (PELs) - Table Z1

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

IRON(7439-89-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)

US - California Permissible Exposure Limits for Chemical Contaminants

US - Hawaii Air Contaminant Limits

US - Michigan Exposure Limits for Air Contaminants

US - Oregon Permissible Exposure Limits (Z-1)

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

LEAD(7439-92-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

US - Alaska Limits for Air Contaminants

US - California - Proposition 65 - Priority List for the Development of MADLs for Chemicals Causing Reproductive Toxicity

US - California Permissible Exposure Limits for Chemical Contaminants

US - California Proposition 65 - Carcinogens

US - California Proposition 65 - Maximum Allowable Dose Levels (MADLs) for Chemicals Causing Reproductive Toxicity

US - California Proposition 65 - No Significant Risk Levels (NSRLs) for Carcinogens

US - California Proposition 65 - Reproductive Toxicity

US - Hawaii Air Contaminant Limits

US - Idaho - Acceptable Maximum Peak Concentrations

US - Idaho - Limits for Air Contaminants

US - Massachusetts - Right To Know Listed Chemicals

US - Minnesota Permissible Exposure Limits (PELs)

US - New Jersey Right to Know - Special Health Hazard Substance List (SHHSL): Carcinogens

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Washington Toxic air pollutants and their ASIL. SQER and de minimis emission values

US ACGIH Threshold Limit Values (TLV)

US ACGIH Threshold Limit Values (TLV) - Carcinogens

US Clean Air Act - Hazardous Air Pollutants

US CWA (Clean Water Act) - Priority Pollutants

US CWA (Clean Water Act) - Toxic Pollutants

US EPA Carcinogens Listing

US EPCRA Section 313 Chemical List

US National Toxicology Program (NTP) 14th Report Part B.

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Levels (PELs) - Table Z1

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

LITHIUM CARBONATE(554-13-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - California Proposition 65 - Reproductive Toxicity

US - Massachusetts - Right To Know Listed Chemicals

US EPCRA Section 313 Chemical List

US Priority List for the Development of Proposition 65 Safe Harbor Levels - No Significant Risk Levels (NSRLs) for Carcinogens and Maximum Allowable Dose Levels (MADLs) for Chemicals Causing Reproductive Toxicity

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

MANGANESE(II) ACETATE TETRAHYDRATE(6156-78-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Chemwatch: 9-248552 Page 21 of 25 Issue Date: 06/03/2017 Print Date: 06/03/2017

Catalogue number: ICP-200.7-5

US - Alaska Limits for Air Contaminants

US - Hawaii Air Contaminant Limits

US - Idaho - Limits for Air Contaminants

US - Michigan Exposure Limits for Air Contaminants

US - Minnesota Permissible Exposure Limits (PELs)

US - Oregon Permissible Exposure Limits (Z-1)

Version No: 2.2

EPA 200.7 Cal Std 5

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants US - Washington Permissible exposure limits of air contaminants US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants US Clean Air Act - Hazardous Air Pollutants US EPCRA Section 313 Chemical List

MERCURY (ELEMENTAL)(7439-97-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC

US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs

US - Alaska Limits for Air Contaminants

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

US - California Permissible Exposure Limits for Chemical Contaminants

- US California OEHHA/ARB Acute Reference Exposure Levels and Target Organs (RELs)
- US California OEHHA/ARB Chronic Reference Exposure Levels and Target Organs
- US California Permissible Exposure Limits for Chemical Contaminants
- US California Proposition 65 Reproductive Toxicity
- US Hawaii Air Contaminant Limits
- US Idaho Acceptable Maximum Peak Concentrations
- US Idaho Limits for Air Contaminants
- US Massachusetts Right To Know Listed Chemicals US - Michigan Exposure Limits for Air Contaminants
- US Minnesota Permissible Exposure Limits (PELs)
- US Oregon Permissible Exposure Limits (Z-2)
- US Pennsylvania Hazardous Substance List
- US Rhode Island Hazardous Substance List
- US Tennessee Occupational Exposure Limits Limits For Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air

US - Washington Permissible exposure limits of air contaminants

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

US OSHA Permissible Exposure Levels (PELs) - Table Z1

- US Washington Toxic air pollutants and their ASIL. SQER and de minimis emission values
- US Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
- US Wyoming Toxic and Hazardous Substances Table Z-2 Acceptable ceiling concentration, Acceptable maximum peak above the acceptable ceiling concentration for an 8-hr shift
- US ACGIH Threshold Limit Values (TLV)
- US ACGIH Threshold Limit Values (TLV) Carcinogens
- US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)
- US Clean Air Act Hazardous Air Pollutants
- US CWA (Clean Water Act) Priority Pollutants
- US CWA (Clean Water Act) Toxic Pollutants
- US EPA Carcinogens Listing
- US EPCRA Section 313 Chemical List
- US NIOSH Recommended Exposure Limits (RELs)
- US OSHA Permissible Exposure Levels (PELs) Table Z1
- US OSHA Permissible Exposure Levels (PELs) Table Z2 $\,$
- US Priority List for the Development of Proposition 65 Safe Harbor Levels No Significant Risk Levels (NSRLs) for Carcinogens and Maximum Allowable Dose Levels (MADLs) for Chemicals Causing Reproductive Toxicity
- US Spacecraft Maximum Allowable Concentrations (SMACs) for Airborne Contaminants
- US Toxic Substances Control Act (TSCA) Chemical Substance Inventory

MOLYBDENUM(7439-98-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- US Alaska Limits for Air Contaminants
- US Hawaii Air Contaminant Limits
- US Idaho Limits for Air Contaminants
- US Massachusetts Right To Know Listed Chemicals
- US Minnesota Permissible Exposure Limits (PELs) US - Pennsylvania - Hazardous Substance List
- US Rhode Island Hazardous Substance List
- US Tennessee Occupational Exposure Limits Limits For Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
- US Washington Permissible exposure limits of air contaminants
- US ACGIH Threshold Limit Values (TLV)
- US ACGIH Threshold Limit Values (TLV) Carcinogens
- US NIOSH Recommended Exposure Limits (RELs)
- US OSHA Permissible Exposure Levels (PELs) Table Z1
- US Toxic Substances Control Act (TSCA) Chemical Substance Inventory

NICKEL(7440-02-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- US Alaska Limits for Air Contaminants
- US California OEHHA/ARB Acute Reference Exposure Levels and Target Organs (RELs)
- US California OEHHA/ARB Chronic Reference Exposure Levels and Target Organs
- US California Permissible Exposure Limits for Chemical Contaminants
- US California Proposition 65 Carcinogens
- US Hawaii Air Contaminant Limits
- US Idaho Limits for Air Contaminants
- US Massachusetts Right To Know Listed Chemicals
- US Michigan Exposure Limits for Air Contaminants
- US Minnesota Permissible Exposure Limits (PELs)
- US New Jersey Right to Know Special Health Hazard Substance List (SHHSL):
- US Oregon Permissible Exposure Limits (Z-1)
- US Pennsylvania Hazardous Substance List
- US Rhode Island Hazardous Substance List
- US Tennessee Occupational Exposure Limits Limits For Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

- US Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
- US Washington Permissible exposure limits of air contaminants
- US Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
- US ACGIH Threshold Limit Values (TLV)
- US ACGIH Threshold Limit Values (TLV) Carcinogens
- US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)
- US Clean Air Act Hazardous Air Pollutants
- US CWA (Clean Water Act) Priority Pollutants
- US CWA (Clean Water Act) Toxic Pollutants
- US EPCRA Section 313 Chemical List
- US National Toxicology Program (NTP) 14th Report Part B.
- US NIOSH Recommended Exposure Limits (RELs)
- US OSHA Permissible Exposure Levels (PELs) Table Z1
- US Priority List for the Development of Proposition 65 Safe Harbor Levels No Significant Risk Levels (NSRLs) for Carcinogens and Maximum Allowable Dose Levels (MADLs) for
- Chemicals Causing Reproductive Toxicity
- US Toxic Substances Control Act (TSCA) Chemical Substance Inventory

AMMONIUM PHOSPHATE, MONOBASIC(7722-76-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

SELENIUM(7782-49-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Chemwatch: 9-248552 Page 22 of 25

Catalogue number: ICP-200.7-5 EPA 200.7 Cal Std 5

Version No: 2.2

Contaminants

Page 22 of 25 Issue Date: 06/03/2017
Print Date: 06/03/2017

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC US - Washington Permissible exposure limits of air contaminants Monographs US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values US - Alaska Limits for Air Contaminants US ACGIH Threshold Limit Values (TLV) US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs) US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs) US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs US Clean Air Act - Hazardous Air Pollutants US CWA (Clean Water Act) - Priority Pollutants US - Hawaii Air Contaminant Limits US CWA (Clean Water Act) - Toxic Pollutants US - Idaho - Limits for Air Contaminants US EPA Carcinogens Listing US - Massachusetts - Right To Know Listed Chemicals US EPCRA Section 313 Chemical List US - Minnesota Permissible Exposure Limits (PELs) US NIOSH Recommended Exposure Limits (RELs) US - Pennsylvania - Hazardous Substance List US OSHA Permissible Exposure Levels (PELs) - Table Z1 US - Rhode Island Hazardous Substance List US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

AMMONIUM FLUOROSILICATE(16919-19-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs	US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs	US - Washington Permissible exposure limits of air contaminants
(CRELs)	US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
US - Hawaii Air Contaminant Limits	US - Wyoming Toxic and Hazardous Substances Table Z-2 Acceptable ceiling concentration,
US - Idaho - Limits for Air Contaminants	Acceptable maximum peak above the acceptable ceiling concentration for an 8-hr shift
US - Massachusetts - Right To Know Listed Chemicals	US CWA (Clean Water Act) - List of Hazardous Substances
US - Oregon Permissible Exposure Limits (Z-1)	US OSHA Permissible Exposure Levels (PELs) - Table Z1
US - Oregon Permissible Exposure Limits (Z-2)	US OSHA Permissible Exposure Levels (PELs) - Table Z2
US - Pennsylvania - Hazardous Substance List	LIS Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

SILVER(7440-22-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air

US - Alaska Limits for Air Contaminants	US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air
US - California Permissible Exposure Limits for Chemical Contaminants	Contaminants
US - Hawaii Air Contaminant Limits	US - Washington Permissible exposure limits of air contaminants
US - Idaho - Limits for Air Contaminants	US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
US - Massachusetts - Right To Know Listed Chemicals	US ACGIH Threshold Limit Values (TLV)
US - Michigan Exposure Limits for Air Contaminants	US CWA (Clean Water Act) - Priority Pollutants
US - Minnesota Permissible Exposure Limits (PELs)	US CWA (Clean Water Act) - Toxic Pollutants
US - Oregon Permissible Exposure Limits (Z-1)	US EPA Carcinogens Listing
US - Pennsylvania - Hazardous Substance List	US EPCRA Section 313 Chemical List
US - Rhode Island Hazardous Substance List	US NIOSH Recommended Exposure Limits (RELs)
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	US OSHA Permissible Exposure Levels (PELs) - Table Z1
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

STRONTIUM(7440-24-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

THALLIUM(7440-28-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Massachusetts - Right To Know Listed Chemicals	US CWA (Clean Water Act) - Priority Pollutants
US - Minnesota Permissible Exposure Limits (PELs)	US CWA (Clean Water Act) - Toxic Pollutants
US - Pennsylvania - Hazardous Substance List	US EPCRA Section 313 Chemical List
US - Rhode Island Hazardous Substance List	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory
US ACGIH Threshold Limit Values (TLV)	

TIN(7440-31-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Alaska Limits for Air Contaminants	US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants
US - California Permissible Exposure Limits for Chemical Contaminants	US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
US - Hawaii Air Contaminant Limits	US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air
US - Idaho - Limits for Air Contaminants	Contaminants
US - Massachusetts - Right To Know Listed Chemicals	US - Washington Permissible exposure limits of air contaminants
US - Minnesota Permissible Exposure Limits (PELs)	US NIOSH Recommended Exposure Limits (RELs)
US - Pennsylvania - Hazardous Substance List	US OSHA Permissible Exposure Levels (PELs) - Table Z1
US - Rhode Island Hazardous Substance List	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

AMMONIUM METAVANADATE(7803-55-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)	US EPCRA Section 313 Chemical List
US - Massachusetts - Right To Know Listed Chemicals	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory
US - Pennsylvania - Hazardous Substance List	

ZINC(7440-66-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Chemwatch: 9-248552 Page 23 of 25

Catalogue number: ICP-200.7-5

Version No: 2.2

EPA 200.7 Cal Std 5

Issue Date: **06/03/2017**Print Date: **06/03/2017**

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants Monographs US - Washington Permissible exposure limits of air contaminants US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants (CRELs) US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs) US - California Permissible Exposure Limits for Chemical Contaminants US CWA (Clean Water Act) - Priority Pollutants US - Hawaii Air Contaminant Limits US CWA (Clean Water Act) - Toxic Pollutants US - Massachusetts - Right To Know Listed Chemicals US EPA Carcinogens Listing US - Michigan Exposure Limits for Air Contaminants US EPCRA Section 313 Chemical List US - Oregon Permissible Exposure Limits (Z-1) US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

NITRIC ACID(7697-37-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Pennsylvania - Hazardous Substance List US - Rhode Island Hazardous Substance List

International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List	US - Vermont Permissible Exposure Limits Table 2-1-A Final Rule Limits for Air Contaminants
Passenger and Cargo Aircraft	US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air
US - Alaska Limits for Air Contaminants	Contaminants
US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)	US - Washington Permissible exposure limits of air contaminants
US - California Permissible Exposure Limits for Chemical Contaminants	US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values
US - Hawaii Air Contaminant Limits	US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
US - Idaho - Limits for Air Contaminants	US ACGIH Threshold Limit Values (TLV)
US - Massachusetts - Right To Know Listed Chemicals	US CWA (Clean Water Act) - List of Hazardous Substances
US - Michigan Exposure Limits for Air Contaminants	US EPCRA Section 313 Chemical List
US - Minnesota Permissible Exposure Limits (PELs)	US NIOSH Recommended Exposure Limits (RELs)
US - Oregon Permissible Exposure Limits (Z-1)	US OSHA Permissible Exposure Levels (PELs) - Table Z1
US - Pennsylvania - Hazardous Substance List	US SARA Section 302 Extremely Hazardous Substances
US - Rhode Island Hazardous Substance List	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

HYDROFLUORIC ACID(7664-39-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs	US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
US - Alaska Limits for Air Contaminants	US - Washington Permissible exposure limits of air contaminants
US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)	US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values
US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs	US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
(CRELs)	US - Wyoming Toxic and Hazardous Substances Table Z-2 Acceptable ceiling concentration,
US - California Permissible Exposure Limits for Chemical Contaminants	Acceptable maximum peak above the acceptable ceiling concentration for an 8-hr shift
US - Hawaii Air Contaminant Limits	US ACGIH Threshold Limit Values (TLV)
US - Idaho - Acceptable Maximum Peak Concentrations	US ACGIH Threshold Limit Values (TLV) - Carcinogens
US - Idaho - Limits for Air Contaminants	US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)
US - Massachusetts - Right To Know Listed Chemicals	US Clean Air Act - Hazardous Air Pollutants
US - Michigan Exposure Limits for Air Contaminants	US CWA (Clean Water Act) - List of Hazardous Substances
US - Minnesota Permissible Exposure Limits (PELs)	US EPCRA Section 313 Chemical List
US - Oregon Permissible Exposure Limits (Z-1)	US NIOSH Recommended Exposure Limits (RELs)
US - Oregon Permissible Exposure Limits (Z-2)	US OSHA Permissible Exposure Levels (PELs) - Table Z1
US - Pennsylvania - Hazardous Substance List	US OSHA Permissible Exposure Levels (PELs) - Table Z2
US - Rhode Island Hazardous Substance List	US SARA Section 302 Extremely Hazardous Substances
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	

WATER(7732-18-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Pennsylvania - Hazardous Substance List

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

SECTION 311/312 HAZARD CATEGORIES

Immediate (acute) health hazard	
Delayed (chronic) health hazard	
Fire hazard	No
Pressure hazard	No
Reactivity hazard	No

US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4)

Name	Reportable Quantity in Pounds (lb)	Reportable Quantity in kg
Antimony	5000	2270
Arsenic	1	0.454
Beryllium	10	4.54
Cadmium	10	4.54
Chromium	5000	2270
Copper	5000	2270
Lead	10	4.54
Mercury	1	0.454
Nickel	100	45.4

Catalogue number: ICP-200.7-5

Version No: 2.2

EPA 200.7 Cal Std 5

Issue Date: **06/03/2017**Print Date: **06/03/2017**

Selenium	100	45.4
Ammonium silicofluoride	1000	454
Silver	1000	454
Thallium	1000	454
Ammonium vanadate	1000	454
Zinc	1000	454
Nitric acid	1000	454
Hydrofluoric acid	100	45.4

State Regulations

US. CALIFORNIA PROPOSITION 65

WARNING: This product contains a chemical known to the State of California to cause cancer and birth defects or other reproductive harm

US - CALIFORNIA PREPOSITION 65 - CARCINOGENS & REPRODUCTIVE TOXICITY (CRT): LISTED SUBSTANCE

Beryllium and beryllium compounds: Beryllium, Cadmium and cadmium compounds: Cadmium, Cobalt metal powder, Lead and lead compounds: Lead, Lithium carbonate, Mercury and mercury compounds, Nickel (Metallic) Listed

National Inventory	Status
Australia - AICS	Υ
Canada - DSL	Υ
Canada - NDSL	N (strontium; thallium; lead; zinc; lithium carbonate; ammonium metavanadate; copper; boron; ammonium phosphate, monobasic; water; antimony; barium; selenium; ammonium fluorosilicate; aluminium; mercury (elemental); molybdenum; arsenic; cobalt; nickel; manganese(II) acetate tetrahydrate; iron; tin; beryllium; chromium; silver; hydrofluoric acid; cadmium; nitric acid)
China - IECSC	Υ
Europe - EINEC / ELINCS / NLP	Y
Japan - ENCS	N (strontium; thallium; zinc; lithium carbonate; copper; boron; ammonium phosphate, monobasic; water; antimony; barium; selenium; ammonium fluorosilicate; aluminium; mercury (elemental); molybdenum; arsenic; cobalt; nickel; manganese(II) acetate tetrahydrate; iron; tin; beryllium; chromium; silver; hydrofluoric acid; cadmium; nitric acid)
Korea - KECI	Y
New Zealand - NZIoC	Υ
Philippines - PICCS	Υ
USA - TSCA	Υ
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

•	
Name	CAS No
aluminium	7429-90-5, 91728-14-2
copper	7440-50-8, 133353-46-5, 133353-47-6, 195161-80-9, 65555-90-0, 72514-83-1
ammonium fluorosilicate	16919-19-0, 1309-32-6
hydrofluoric acid	7664-39-3, 790596-14-4

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit $_{\circ}$

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

Chemwatch: 9-248552 Catalogue number: ICP-200.7-5 Version No: 2.2 Page **25** of **25**

EPA 200.7 Cal Std 5

Issue Date: **06/03/2017**Print Date: **06/03/2017**

TEL (+61 3) 9572 4700.