

100 33-2 Mercury (100µg/mL in 2% HCl)

High-Purity Standards

Catalogue number: 100 33-2

Version No: 1.1

Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **06/12/2017**Print Date: **06/12/2017**S.GHS.USA.EN

SECTION 1 IDENTIFICATION

Product Identifier

Product name	100 33-2 Mercury (100μg/mL in 2% HCl)
Chemical Name	water
Synonyms	100 33-2
Proper shipping name	Hydrochloric acid
Other means of identification	100 33-2

Recommended use of the chemical and restrictions on use

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	High-Purity Standards
Address	PO Box 41727 SC 29423 United States
Telephone	843-767-7900
Fax	843-767-7906
Website	highpuritystandards.com
Email	Not Available

Emergency phone number

Association / Organisation	INFOTRAC
Emergency telephone numbers	1-800-535-5053
Other emergency telephone numbers	1-352-323-3500

SECTION 2 HAZARD(S) IDENTIFICATION

Classification of the substance or mixture

Metal Corrosion Category 1, Skin Corrosion/Irritation Category 1A, Serious Eye Damage Category 1

Label elements

Hazard pictogram(s)

SIGNAL WORD DA

DANGER

Hazard statement(s)

H290	May be corrosive to metals.
H314	Causes severe skin burns and eye damage.

Hazard(s) not otherwise specified

Not Applicable

Chemwatch: 9-410275

Catalogue number: 100 33-2

Page 2 of 11 100 33-2 Mercury ($100 \mu g/mL$ in 2% HCl) Issue Date: 06/12/2017 Print Date: 06/12/2017

Precautionary statement(s) Prevention

P260 Do not breathe dust/fume/gas/mist/vapours/spray.

Precautionary statement(s) Response

P301+P330+P331 IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.

Precautionary statement(s) Storage

P405 Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

Version No: 1.1

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
10112-91-1	0.01	mercurous chloride
7647-01-0	2	hydrochloric acid
7732-18-5	97.99	water

SECTION 4 FIRST-AID MEASURES

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.
Inhalation	 If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Inhalation of vapours or aerosols (mists, furnes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719)
Ingestion	 For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay.

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed

Treat symptomatically

for corrosives:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- ▶ Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- $\,\blacktriangleright\,$ Monitor and treat, where necessary, for pulmonary oedema .
- Monitor and treat, where necessary, for shock.

Chemwatch: **9-410275** Page **3** of **11**

Catalogue number: 100 33-2

Version No: 1.1

100 33-2 Mercury (100µg/mL in 2% HCI)

Issue Date: **06/12/2017**Print Date: **06/12/2017**

- Anticipate seizures.
- ▶ Where eyes have been exposed, flush immediately with water and continue to irrigate with normal saline during transport to hospital.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool
- ▶ Skin burns should be covered with dry, sterile bandages, following decontamination.
- DO NOT attempt neutralisation as exothermic reaction may occur.

.....

ADVANCED TREATMENT

- ▶ Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- · Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- ► Consider endoscopy to evaluate oral injury.
- Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 FIRE-FIGHTING MEASURES

Extinguishing media

- ▶ There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility

None known

Special protective equipment and precautions for fire-fighters

Fire Fighting

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
 - ► DO NOT approach containers suspected to be hot.
 - ▶ Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.
 - ▶ Equipment should be thoroughly decontaminated after use
- Fire/Explosion Hazard
- ► Non combustible
- ▶ Not considered a significant fire risk, however containers may burn.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

- ▶ Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.
- ► Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- ► Control personal contact with the substance, by using protective equipment.
- ▶ Contain and absorb spill with sand, earth, inert material or vermiculite.
- ▶ Wipe up
 - ▶ Place in a suitable, labelled container for waste disposal.

Major Spills

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling

- ► Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material.
- Avoid smoking, naked lights or ignition sources.

Version No: 1.1

100 33-2 Mercury (100µg/mL in 2% HCl)

Issue Date: 06/12/2017 Print Date: 06/12/2017

Avoid contact with incompatible materials.

- When handling, DO NOT eat, drink or smoke
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- ► DO NOT allow clothing wet with material to stay in contact with skin
- Store in original containers.
 - Keep containers securely sealed.
 - Store in a cool, dry, well-ventilated area.
 - Store away from incompatible materials and foodstuff containers.
 - Protect containers against physical damage and check regularly for leaks.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

- Lined metal can, lined metal pail/ can.
- ► Plastic pail.
- Polyliner drum.
- ► Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- ▶ Where a can is to be used as an inner package, the can must have a screwed enclosure.

Suitable container

Other information

- For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

Removable head packaging:

- Cans with friction closures and
- low pressure tubes and cartridges

may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

Hydrogen chloride:

- reacts strongly with strong oxidisers (releasing chlorine gas), acetic anhydride, caesium cyanotridecahydrodecaborate(2-), ethylidene diffuoride, hexalithium disilicide, metal acetylide, sodium, silicon dioxide, tetraselenium tetranitride, and many organic materials
- ▶ is incompatible with alkaline materials, acetic anhydride, acetylides, aliphatic amines, alkanolamines, alkylene oxides, aluminium, aluminium-titanium alloys, aromatic amines, amines, amides, 2-aminoethanol, ammonia, ammonium hydroxide, borides, calcium phosphide, carbides, carbonates, cyanides, chlorosulfonic acid, ethylenediamine, ethyleneimine, epichlorohydrin, formaldehyde, isocyanates, metals, metal oxides, metal hydroxides, metal acetylides, metal carbides, oleum, organic anhydrides, potassium permanganate, perchloric acid, phosphides, 3-propiolactone, silicides, sulfides, sulfites, sulfuric acid, uranium phosphide, vinyl acetate, vinylidene fluoride
- ▶ attacks most metals forming flammable hydrogen gas, and some plastics, rubbers and coatings
- ▶ reacts with zinc, brass, galvanised iron, aluminium, copper and copper alloys
- Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.
- Avoid strong bases

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
US OSHA Permissible Exposure Levels (PELs) - Table Z1	hydrochloric acid	Hydrogen chloride	Not Available	Not Available	7 mg/m3 / 5 ppm	TLV® Basis: URT irr
US NIOSH Recommended Exposure Limits (RELs)	hydrochloric acid	Anhydrous hydrogen chloride; Aqueous hydrogen chloride (i.e., Hydrochloric acid, Muriatic acid) [Note: Often used in an aqueous solution.]	Not Available	Not Available	7 mg/m3 / 5 ppm	Not Available
US ACGIH Threshold Limit Values (TLV)	hydrochloric acid	Hydrogen chloride	Not Available	Not Available	2 ppm	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
mercurous chloride	Mercury(I) chloride; (Dimercury dichloride)	0.088 mg/m3	0.12 mg/m3	33 mg/m3
mercurous chloride	Mercurous chloride; (Mercury monochloride)	0.088 mg/m3	0.12 mg/m3	33 mg/m3
hydrochloric acid	Hydrogen chloride; (Hydrochloric acid)	Not Available	Not Available	Not Available
hydrochloric acid	Deuterochloric acid; (Deuterium chloride)	1.8 ppm	22 ppm	100 ppm

Ingredient	Original IDLH	Revised IDLH
mercurous chloride	28 mg/m3	10 mg/m3
hydrochloric acid	100 ppm	50 ppm
water	Not Available	Not Available

Chemwatch: 9-410275
Catalogue number: 100 33-2

Page **5** of **11**

100 33-2 Mercury (100µg/mL in 2% HCI)

Issue Date: **06/12/2017**Print Date: **06/12/2017**

Exposure controls

Version No: 1.1

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

 $\dot{\text{Employers}}$ may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contain	ninant:	Air Speed:
solvent, vapou	urs, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
	es from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating ckling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, s zone of rapid a	oray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abra air motion).	sive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range	
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity	
3: Intermittent, low production.	3: High production, heavy use	
4: Large hood or large air mass in motion	4: Small hood-local control only	

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 t/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eve and face protection

Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under

▶ Chemical goggles.whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.

- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

Hands/feet protection

See Hand protection below

- ► Elbow length PVC gloves
- ▶ When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and

dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.
- For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the

Version No: 1.1

100 33-2 Mercury (100µg/mL in 2% HCI)

Issue Date: **06/12/2017**Print Date: **06/12/2017**

glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. **Body protection** See Other protection below ► PVC Apron. Other protection ▶ PVC protective suit may be required if exposure severe. ▶ Ensure there is ready access to a safety shower. Thermal hazards Not Available

Respiratory protection

Type B-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

76b-p()

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Colourless		
Physical state	Liquid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	<2	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	► Contact with alkaline material liberates heat
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

iniormation on toxicologic	
Inhaled	The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Not normally a hazard due to non-volatile nature of product The material has NOT been classified by EC Directives or other classification systems as "harmful by inhalation". This is because of the lack of corroborating animal or human evidence.
Ingestion	The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion. The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence.

Page **7** of **11**

100 33-2 Mercury ($100 \mu g/mL$ in 2% HCl)

Issue Date: **06/12/2017** Print Date: **06/12/2017**

Version No: 1.1

Skin Contact	The material can produce severe chemical burns following direct contact with th Skin contact is not thought to have harmful health effects (as classified under E0 through wounds, lesions or abrasions. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, ma of the material and ensure that any external damage is suitably protected.	C Directives				
Eye	The material can produce severe chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. If applied to the eyes, this material causes severe eye damage.					
Chronic	Repeated or prolonged exposure to corrosives may result in the erosion of teeth jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia Long-term exposure to respiratory irritants may result in airways disease, involvi Substance accumulation, in the human body, may occur and may cause some contered has been some concern that this material can cause cancer or mutations to Chronic minor exposure to hydrogen chloride (HCI) vapour or fume may cause of ulceration of the mucous membranes of the nose. Workers exposed to hydrochlobronchitis (airway inflammation) have also been reported. Repeated or prolonge inflammation.	a may ensu ing difficulty oncern follo but there is discolourati oric acid sul	e. r breathing and relate wing repeated or lon not enough data to on or erosion of the fered from stomach	ed whole-body problems. g-term occupational exposure. make an assessment. teeth, bleeding of the nose and gums; and inflammation and a number of cases of chronic		
	TOXICITY	IRRITATI	ON			
100 33-2 Mercury (100µg/mL in 2% HCl)	Not Available	Not Availa				
ŕ	Not Available	INOL Availe	abic			
	TOXICITY			IRRITATION		
mercurous chloride	dermal (rat) LD50: 1500 mg/kg ^[2]			Not Available		
	Oral (rat) LD50: 210 mg/kgd ^[2]					
	TOXICITY IRRITATION					
hydrochloric acid	Inhalation (rat) LC50: 781 ppm/1hr ^[2]		Eye (rabbit): 5mg/3	Os - mild		
nydrochione acid			Lyc (rabbit). omgro	. 3		
	Oral (rat) LD50: 900 mg/kg ^[2]					
water	TOXICITY	IRRITATI				
	Not Available	Not Availa	able			
Legend:	Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2.	* Value obt	ained from manufac	turer's SDS. Unless otherwise specified data		
	extracted from RTECS - Register of Toxic Effect of chemical Substances					
MERCUROUS CHI ORIDE	-		amily of chemicals r	oroducing damage or change to cellular DN∆		
MERCUROUS CHLORIDE HYDROCHLORIC ACID	extracted from RTECS - Register of Toxic Effect of chemical Substances NOTE: Substance has been shown to be mutagenic in at least one assay, or bell For acid mists, aerosols, vapours Test results suggest that eukaryotic cells are susceptible to genetic damage who the material may be irritating to the eye, with prolonged contact causing inflamment the substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans.	longs to a f		producing damage or change to cellular DNA.		
	NOTE: Substance has been shown to be mutagenic in at least one assay, or bell For acid mists, aerosols, vapours Test results suggest that eukaryotic cells are susceptible to genetic damage who The material may be irritating to the eye, with prolonged contact causing inflammathe substance is classified by IARC as Group 3:	longs to a face of the pH for the	alls to about 6.5.	producing damage or change to cellular DNA.		
HYDROCHLORIC ACID	NOTE: Substance has been shown to be mutagenic in at least one assay, or bell For acid mists, aerosols, vapours Test results suggest that eukaryotic cells are susceptible to genetic damage who The material may be irritating to the eye, with prolonged contact causing inflamn The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans.	longs to a face of the pH for the	alls to about 6.5.	producing damage or change to cellular DNA.		
MERCUROUS CHLORIDE & HYDROCHLORIC ACID HYDROCHLORIC ACID &	NOTE: Substance has been shown to be mutagenic in at least one assay, or bell For acid mists, aerosols, vapours Test results suggest that eukaryotic cells are susceptible to genetic damage who The material may be irritating to the eye, with prolonged contact causing inflamm The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Asthma-like symptoms may continue for months or even years after exposure to the No significant acute toxicological data identified in literature search.	longs to a face of the pH for the	alls to about 6.5.	producing damage or change to cellular DNA.		
MERCUROUS CHLORIDE & HYDROCHLORIC ACID HYDROCHLORIC ACID & WATER	NOTE: Substance has been shown to be mutagenic in at least one assay, or bell For acid mists, aerosols, vapours Test results suggest that eukaryotic cells are susceptible to genetic damage who The material may be irritating to the eye, with prolonged contact causing inflamm. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Asthma-like symptoms may continue for months or even years after exposure to the No significant acute toxicological data identified in literature search.	ongs to a fi en the pH f nation.	alls to about 6.5. ends.	producing damage or change to cellular DNA.		
MERCUROUS CHLORIDE & HYDROCHLORIC ACID HYDROCHLORIC ACID & WATER	NOTE: Substance has been shown to be mutagenic in at least one assay, or bell For acid mists, aerosols, vapours Test results suggest that eukaryotic cells are susceptible to genetic damage who The material may be irritating to the eye, with prolonged contact causing inflamm. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Asthma-like symptoms may continue for months or even years after exposure to the No significant acute toxicological data identified in literature search.	iongs to a finent the pH fination. the material arcinogen	alls to about 6.5. ends.	producing damage or change to cellular DNA.		
MERCUROUS CHLORIDE & HYDROCHLORIC ACID HYDROCHLORIC ACID & WATER Acute Toxicity Skin Irritation/Corrosion Serious Eye	NOTE: Substance has been shown to be mutagenic in at least one assay, or bell For acid mists, aerosols, vapours Test results suggest that eukaryotic cells are susceptible to genetic damage who The material may be irritating to the eye, with prolonged contact causing inflamment the substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Asthma-like symptoms may continue for months or even years after exposure to the No significant acute toxicological data identified in literature search.	longs to a fination. The material arcinogen Reproductingle Expositions of the material arcinogen arcinoge	ends.	producing damage or change to cellular DNA.		

Legend:

X − Data available but does not fill the criteria for classification
 ✓ − Data available to make classification

✓ – Data available to make classification
 Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

100 33-2 Mercury (100µg/mL in 2% HCl)	ENDPOINT	TEST DURATION (HR)		SPECIES	VALUE		SOUR	CE
	Not Applicable	Not Applicable	Not Applicable Not Applicable		Not Ap	plicable		
mercurous chloride	ENDPOINT	TEST DURATION (HR)	SPECIE	ES		VALUE		SOURCE

Version No: 1.1

100 33-2 Mercury (100µg/mL in 2% HCl)

Issue Date: **06/12/2017**Print Date: **06/12/2017**

Not Applicable

LC50 0.0791mg/L 96 Fish 6 EC50 48 Crustacea 0.0078mg/L 4 EC50 96 Algae or other aquatic plants 42341.973mg/L 3 3 EC50 384 Crustacea 1318.321mg/L SPECIES **ENDPOINT TEST DURATION (HR)** VALUE SOURCE LC50 70.057mg/L 96 Fish 3 96 hydrochloric acid FC50 Algae or other aquatic plants 344.947mg/L 3 EC50 9.33 Fish 0.014000mg/L 4 വ വജ Fish 4 NOFC 10mg/L ENDPOINT TEST DURATION (HR) SPECIES SOURCE

Legend:

water

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Not Applicable

Not Applicable

Prevent, by any means available, spillage from entering drains or water courses.

Not Applicable

Not Applicable

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
mercurous chloride	HIGH	HIGH
hydrochloric acid	LOW	LOW
water	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
mercurous chloride	MEDIUM (BCF = 1300)
hydrochloric acid	LOW (LogKOW = 0.5392)
water	LOW (LogKOW = -1.38)

Mobility in soil

Ingredient	Mobility
mercurous chloride	LOW (KOC = 43.79)
hydrochloric acid	LOW (KOC = 14.3)
water	LOW (KOC = 14.3)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- ▶ Reuse
- ▶ Recycling
- Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility
 can be identified.
- Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.


SECTION 14 TRANSPORT INFORMATION

Labels Required

Catalogue number: **100 33-2**Version No: **1.1**

100 33-2 Mercury ($100 \mu g/mL$ in 2% HCl)

Issue Date: 06/12/2017 Print Date: 06/12/2017

Land transport (DOT)

UN number	1789		
UN proper shipping name	Hydrochloric acid		
Transport hazard class(es)	Class 8 Subrisk Not Applicable		
Packing group	П		
Environmental hazard	Not Applicable		
Special precautions for user	Hazard Label 8 Special provisions 386, A3, A6, B3, B15, B133, IB2, N41, T8, TP2		

Air transport (ICAO-IATA / DGR)

UN number	1789		
UN proper shipping name	Hydrochloric acid		
	ICAO/IATA Class	8	
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable	
	ERG Code	8L	
Packing group	II		
Environmental hazard	Not Applicable		
	Special provisions		A3A803
	Cargo Only Packing I	nstructions	855
	Cargo Only Maximum	Qty / Pack	30 L
Special precautions for user	Passenger and Cargo	Packing Instructions	851
	Passenger and Cargo	Maximum Qty / Pack	1 L
	Passenger and Cargo	Limited Quantity Packing Instructions	Y840
	Passenger and Cargo	Limited Maximum Qty / Pack	0.5 L

Sea transport (IMDG-Code / GGVSee)

UN number	1789
UN proper shipping name	HYDROCHLORIC ACID
Transport hazard class(es)	IMDG Class 8 IMDG Subrisk Not Applicable
Packing group	П
Environmental hazard	Not Applicable
Special precautions for user	EMS Number F-A, S-B Special provisions Not Applicable Limited Quantities 1 L

Transport in bulk according to Annex II of MARPOL and the IBC code

Source	Product name	Pollution Category	Ship Type
IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk	Hydrochloric acid	Z	3

SECTION 15 REGULATORY INFORMATION

Version No: 1.1

100 33-2 Mercury ($100 \mu g/mL$ in 2% HCl)

Issue Date: 06/12/2017 Print Date: 06/12/2017

MERCUROUS CHLORIDE(10112-91-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs	US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
US - Alaska Limits for Air Contaminants	US - Washington Permissible exposure limits of air contaminants
US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)	US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs	US ACGIH Threshold Limit Values (TLV)
(CRELs)	US ACGIH Threshold Limit Values (TLV) - Carcinogens
US - California Permissible Exposure Limits for Chemical Contaminants	US Clean Air Act - Hazardous Air Pollutants
US - California Proposition 65 - Reproductive Toxicity	US CWA (Clean Water Act) - Priority Pollutants
US - Hawaii Air Contaminant Limits	US CWA (Clean Water Act) - Toxic Pollutants
US - Idaho - Limits for Air Contaminants	US EPCRA Section 313 Chemical List
US - Michigan Exposure Limits for Air Contaminants	US OSHA Permissible Exposure Levels (PELs) - Table Z1
US - Minnesota Permissible Exposure Limits (PELs)	US Priority List for the Development of Proposition 65 Safe Harbor Levels - No Significant Risk
US - Pennsylvania - Hazardous Substance List	Levels (NSRLs) for Carcinogens and Maximum Allowable Dose Levels (MADLs) for
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	Chemicals Causing Reproductive Toxicity
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

HYDROCHLORIC ACID(7647-01-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

· · · · · · · · · · · · · · · · · · ·	-
International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs	US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
US - Alaska Limits for Air Contaminants	US - Washington Permissible exposure limits of air contaminants
US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)	US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values
US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs	US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
(CRELs)	US ACGIH Threshold Limit Values (TLV)
US - California Permissible Exposure Limits for Chemical Contaminants	US ACGIH Threshold Limit Values (TLV) - Carcinogens
US - Hawaii Air Contaminant Limits	US Clean Air Act - Hazardous Air Pollutants
US - Idaho - Limits for Air Contaminants	US CWA (Clean Water Act) - List of Hazardous Substances
US - Massachusetts - Right To Know Listed Chemicals	US Drug Enforcement Administration (DEA) List I and II Regulated Chemicals
US - Michigan Exposure Limits for Air Contaminants	US EPCRA Section 313 Chemical List
US - Minnesota Permissible Exposure Limits (PELs)	US NIOSH Recommended Exposure Limits (RELs)
US - Oregon Permissible Exposure Limits (Z-1)	US OSHA Permissible Exposure Levels (PELs) - Table Z1
US - Pennsylvania - Hazardous Substance List	US SARA Section 302 Extremely Hazardous Substances
US - Rhode Island Hazardous Substance List	US Spacecraft Maximum Allowable Concentrations (SMACs) for Airborne Contaminants
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	

WATER(7732-18-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory US - Pennsylvania - Hazardous Substance List

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

SECTION 311/312 HAZARD CATEGORIES

Immediate (acute) health hazard	Yes
Delayed (chronic) health hazard	No
Fire hazard	No
Pressure hazard	No
Reactivity hazard	No

US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4)

Name	Reportable Quantity in Pounds (lb)	Reportable Quantity in kg
Hydrochloric acid	5000	2270

State Regulations

US. CALIFORNIA PROPOSITION 65

WARNING: This product contains a chemical known to the State of California to cause cancer and birth defects or other reproductive harm

US - CALIFORNIA PREPOSITION 65 - CARCINOGENS & REPRODUCTIVE TOXICITY (CRT): LISTED SUBSTANCE

Mercury and mercury compounds Listed

National Inventory	Status
Australia - AICS	Υ
Canada - DSL	Υ
Canada - NDSL	N (hydrochloric acid; water; mercurous chloride)
China - IECSC	Υ
Europe - EINEC / ELINCS / NLP	Y
Japan - ENCS	N (water; mercurous chloride)
Korea - KECI	Υ
New Zealand - NZIoC	Υ
Philippines - PICCS	Υ

Chemwatch: 9-410275 Page 11 of 11 Issue Date: 06/12/2017 Print Date: 06/12/2017

Catalogue number: 100 33-2

Version No: 1.1

100 33-2 Mercury (100μg/mL in 2% HCl)

USA - TSCA	Y
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

Name	CAS No
mercurous chloride	10112-91-1, 7546-30-7

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average

 ${\sf PC-STEL} : {\sf Permissible Concentration-Short Term Exposure Limit}$

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL: No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.