

River Sediment Solution B

High-Purity Standards

Catalogue number: CRM-RS-B

Version No: 1.1

Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **06/06/2017**Print Date: **06/06/2017**S.GHS.USA.EN

SECTION 1 IDENTIFICATION

Product Identifier

Product name	River Sediment Solution B
Synonyms	CRM-RS-B
Proper shipping name	Corrosive liquid, acidic, inorganic, n.o.s. (contains nitric acid)
Other means of identification	CRM-RS-B

Recommended use of the chemical and restrictions on use

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	High-Purity Standards
Address	PO Box 41727 SC 29423 United States
Telephone	843-767-7900
Fax	843-767-7906
Website	highpuritystandards.com
Email	Not Available

Emergency phone number

• • •	
Association / Organisation	INFOTRAC
Emergency telephone numbers	1-800-535-5053
Other emergency telephone numbers	1-352-323-3500

SECTION 2 HAZARD(S) IDENTIFICATION

Classification of the substance or mixture

Classification

Metal Corrosion Category 1, Skin Corrosion/Irritation Category 1A

Label elements

Hazard pictogram(s)

SIGNAL WORD

DANGER

Hazard statement(s)

nazaru statement(s)			
H290	May be corrosive to metals.		
H314	Causes severe skin burns and eye damage.		

Hazard(s) not otherwise specified

Not Applicable

Chemwatch: 9-407222 Catalogue number: CRM-RS-B Page 2 of 21

Issue Date: 06/06/2017 Print Date: 06/06/2017 **River Sediment Solution B**

Version No: 1.1

P260 Do not breathe dust/fume/gas/mist/vapours/spray.

Precautionary statement(s) Response

P301+P330+P331

IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.

Precautionary statement(s) Storage

P405

Store locked up.

Precautionary statement(s) Disposal

P501

Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
7429-90-5	0.06	aluminium
7440-36-0	0.000004	antimony
7440-38-2	0.00002	arsenic
7440-39-3	0.0004	<u>barium</u>
7440-43-9	0.000003	<u>cadmium</u>
7440-70-2	0.03	<u>calcium</u>
7440-47-3	0.0015	<u>chromium</u>
7440-48-4	0.000015	cobalt
7440-50-8	0.0001	copper
7439-89-6	0.04	<u>iron</u>
7439-92-1	0.0002	<u>lead</u>
7439-95-4	0.012	<u>magnesium</u>
638-38-0	0.0006	manganese(II) acetate
7440-02-0	0.00005	<u>nickel</u>
7440-09-7	0.02	potassium
7782-49-2	0.000001	selenium
7440-23-5	0.005	<u>sodium</u>
7440-28-0	0.000001	<u>thallium</u>
7803-55-6	0.0001 (as V)	ammonium metavanadate
7440-66-6	0.0005	zinc
7697-37-2	4	nitric acid
7732-18-5	balance	water
7722-76-1	0.001 (as P)	ammonium phosphate, monobasic
16919-19-0	0.3 (as Si)	ammonium fluorosilicate
10102-06-4	0.000003 (as U)	<u>uranyl nitrate</u>
1314-20-1	0.00001 (as Th)	thorium oxide

SECTION 4 FIRST-AID MEASURES

Description of first aid measures

Description of first aid me	rescription of first aid measures				
Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.				
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.				
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. 				

Chemwatch: 9-407222 Page 3 of 21 Issue Date: 06/06/2017
Catalogue number: CRM-RS-B Print Date: 06/06/2017

Version No: 1.1

River Sediment Solution B

 Transport to hospital, or doctor, without delay. Inhalation of vapours or aerosols (mists, fumes) may cause lung gedema. ► Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (vet) manifested. ▶ Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her (ICSC13719) For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting ▶ If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Ingestion Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay.

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed

For acute or short term repeated exposures to strong acids

- ▶ Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- ▶ Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues. INGESTION:
- ▶ Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- ▶ DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury
- ▶ Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
- ▶ Charcoal has no place in acid management.
- ▶ Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:

- > Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- ▶ Deep second-degree burns may benefit from topical silver sulfadiazine

FYF

- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required.
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology]

Both dermal and oral toxicity of manganese salts is low because of limited solubility of manganese. No known permanent pulmonary sequelae develop after acute manganese exposure. Treatment is supportive.

[Ellenhorn and Barceloux: Medical Toxicology]

In clinical trials with miners exposed to manganese-containing dusts, L-dopa relieved extrapyramidal symptoms of both hypo kinetic and dystonic patients. For short periods of time symptoms could also be controlled with scopolamine and amphetamine. BAL and calcium EDTA prove ineffective.

[Gosselin et al: Clinical Toxicology of Commercial Products.]

SECTION 5 FIRE-FIGHTING MEASURES

Extinguishing media

- ▶ There is no restriction on the type of extinguisher which may be used.
- ▶ Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility None known.

Special protective equipment and precautions for fire-fighters

Fire Fighting

- ▶ Non combustible.
- ▶ Not considered to be a significant fire risk.

Fire/Explosion Hazard

- Acids may react with metals to produce hydrogen, a highly flammable and explosive gas.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers.
- ► May emit corrosive, poisonous fumes. May emit acrid smoke.

When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Chemwatch: 9-407222

Page 4 of 21

Catalogue number: CRM-RS-B

Version No: 1.1

River Sediment Solution B

▶ Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.

Issue Date: 06/06/2017 Print Date: 06/06/2017

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Check regularly for spills and leaks.

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite
- Place in a suitable, labelled container for waste disposal.

Major Spills

Minor Spills

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- Avoid all personal contact, including inhalation
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- Safe handling
- ► When handling, **DO NOT** eat, drink or smoke
 - Keep containers securely sealed when not in use.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately. Launder contaminated clothing before re-use.
 - Use good occupational work practice.
 - Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

Suitable container

- Store in original containers. Keep containers securely sealed
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS

Conditions for safe storage, including any incompatibilities

► DO NOT use aluminium or galvanised containers

- Check regularly for spills and leaks
- Lined metal can, lined metal pail/ can.
- Plastic pail.
- ▶ Polyliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- ▶ Drums and jerricans must be of the non-removable head type.
 - Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- Removable head packaging;
- ► Cans with friction closures and
- ▶ low pressure tubes and cartridges

may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the

For aluminas (aluminium oxide):

Incompatible with hot chlorinated rubber.

In the presence of chlorine trifluoride may react violently and ignite.

-May initiate explosive polymerisation of olefin oxides including ethylene oxide.

-Produces exothermic reaction above 200 C with halocarbons and an exothermic reaction at ambient temperatures with halocarbons in the presence of other metals

-Produces exothermic reaction with oxygen difluoride.

-May form explosive mixture with oxygen difluoride.

-Forms explosive mixtures with sodium nitrate

-Reacts vigorously with vinyl acetate Storage incompatibility

Aluminium oxide is an amphoteric substance, meaning it can react with both acids and bases, such as hydrofluoric acid and sodium hydroxide, acting as an acid with a base and a base with an acid, neutralising the other and producing a salt.

- ▶ Inorganic acids are generally soluble in water with the release of hydrogen ions. The resulting solutions have pH's of less than 7.0.
- Inorganic acids neutralise chemical bases (for example: amines and inorganic hydroxides) to form salts neutralisation can generate dangerously large amounts of heat in small spaces
- The dissolution of inorganic acids in water or the dilution of their concentrated solutions with additional water may generate significant heat.
- ▶ The addition of water to inorganic acids often generates sufficient heat in the small region of mixing to cause some of the water to boil explosively. The resulting "bumping" can spatter the acid.
- Inorganic acids react with active metals, including such structural metals as aluminum and iron, to release hydrogen, a flammable gas.
- Inorganic acids can initiate the polymerisation of certain classes of organic compounds.
- Inorganic acids react with cyanide compounds to release gaseous hydrogen cyanide

Chemwatch: **9-407222** Page **5** of **21**

Catalogue number: CRM-RS-B

Version No: 1.1

River Sediment Solution B

Issue Date: **06/06/2017**Print Date: **06/06/2017**

- Inorganic acids generate flammable and/or toxic gases in contact with dithiocarbamates, isocyanates, mercaptans, nitrides, nitrides, sulfides, and strong reducing agents. Additional gas-generating reactions occur with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), and even carbonates.
- ▶ Acids often catalyse (increase the rate of) chemical reactions.
- ► WARNING: Avoid or control reaction with peroxides. All *transition metal* peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- ► The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- ▶ Avoid reaction with borohydrides or cyanoborohydrides
- ► Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

INGREDIENT DATA						
Source	Ingredient	Material name	TWA	STEL	Peak	Notes
US OSHA Permissible Exposure Levels (PELs) - Table Z1	aluminium	Aluminum, metal	15 mg/m3	Not Available	Not Available	Total dust; (as AI)
US OSHA Permissible Exposure Levels (PELs) - Table Z1	aluminium	Aluminum, metal- Respirable fraction	5 mg/m3	Not Available	Not Available	(as AI)
US NIOSH Recommended Exposure Limits (RELs)	aluminium	Aluminium, Aluminum metal, Aluminum powder, Elemental aluminum	10 (total), 5 (resp) mg/m3	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	antimony	Antimony metal, Antimony powder, Stibium	0.5 mg/m3	Not Available	Not Available	[*Note: The REL also applies to other antimony compounds (as Sb).]
US NIOSH Recommended Exposure Limits (RELs)	arsenic	Arsenic metal: Arsenia	Not Available	Not Available	0.002 mg/m3	Ca See Appendix A
US OSHA Permissible Exposure Levels (PELs) - Table Z1	cadmium	Cadmium	0.005 mg/m3	Not Available	Not Available	see 1910.1027;(as Cd)
US NIOSH Recommended Exposure Limits (RELs)	cadmium	Cadmium metal: Cadmium	0.01 mg/m3	Not Available	Not Available	Ca See Appendix A [*Note: The REL applies to all Cadmium compounds (as Cd).]
US ACGIH Threshold Limit Values (TLV)	cadmium	Cadmium	Not Available	Not Available	Not Available	TLV® Basis: Kidney dam; BEI
US NIOSH Recommended Exposure Limits (RELs)	chromium	Chrome, Chromium	0.5 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Levels (PELs) - Table Z1	cobalt	Cobalt metal, dust, and fume	0.1 mg/m3	Not Available	Not Available	(as Co)
US NIOSH Recommended Exposure Limits (RELs)	cobalt	Cobalt metal dust, Cobalt metal fume	0.05 mg/m3	Not Available	Not Available	TLV® Basis: Pneumonitis
US ACGIH Threshold Limit Values (TLV)	cobalt	Hard metals containing Cobalt and Tungsten carbide, as Co	0.005 mg/m3	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	copper	Copper metal dusts, Copper metal fumes	1 mg/m3	Not Available	Not Available	[*Note: The REL also applies to other copper compounds (as Cu) except Copper fume.]
US ACGIH Threshold Limit Values (TLV)	copper	Copper - Fume, as Cu	0.2 mg/m3	Not Available	Not Available	TLV® Basis: Irr; GI; metal fume fever; BEI
US ACGIH Threshold Limit Values (TLV)	copper	Copper - Dusts and mists, as Cu	1 mg/m3	Not Available	Not Available	TLV® Basis: Irr; GI; metal fume fever; BEI
US NIOSH Recommended Exposure Limits (RELs)	lead	Lead metal, Plumbum	0.050 mg/m3	Not Available	Not Available	See Appendix C [*Note: The REL also applies to other lead compounds (as Pb) - see Appendix C.]
US NIOSH Recommended Exposure Limits (RELs)	nickel	Nickel metal: Elemental nickel, Nickel catalyst	0.015 mg/m3	Not Available	Not Available	Ca See Appendix A [*Note: The REL does not apply to Nickel carbonyl.]
US ACGIH Threshold Limit Values (TLV)	nickel	Nickel and inorganic compounds including Nickel subsulfide, as Ni - Elemental	1.5 mg/m3	Not Available	Not Available	TLV® Basis: Dermatitis; pneumoconiosis
US NIOSH Recommended Exposure Limits (RELs)	selenium	Elemental selenium, Selenium alloy	0.2 mg/m3	Not Available	Not Available	[*Note: The REL also applies to other selenium compounds (as Se) except Selenium hexafluoride.]
US OSHA Permissible Exposure Levels (PELs) - Table Z1	nitric acid	Nitric acid	5 mg/m3 / 2 ppm	10 mg/m3 / 4 ppm	Not Available	TLV® Basis: URT & eye irr; dental erosion
US NIOSH Recommended Exposure Limits (RELs)	nitric acid	Aqua fortis, Engravers acid, Hydrogen nitrate, Red fuming nitric acid (RFNA), White fuming nitric acid (WFNA)	5 mg/m3 / 2 ppm	4 ppm	Not Available	Not Available
US ACGIH Threshold Limit Values (TLV)	nitric acid	Nitric acid	2 ppm	Not Available	Not Available	Not Available

Page 6 of 21

Catalogue number: CRM-RS-B

Version No: 1.1

River Sediment Solution B

Issue Date: 06/06/2017 Print Date: 06/06/2017

Ingredient	Material name		TEEL-1	TEEL-2	TEEL-3
antimony	Antimony	1.5 mg/m3	13 mg/m3	80 mg/m3	
barium	Barium		1.5 mg/m3	180 mg/m3	1,100 mg/m3
cadmium	Cadmium		Not Available	Not Available	Not Available
chromium	Chromium		1.5 mg/m3	17 mg/m3	99 mg/m3
cobalt	Cobalt		0.18 mg/m3	2 mg/m3	20 mg/m3
copper	Copper		3 mg/m3	33 mg/m3	200 mg/m3
iron	Iron		3.2 mg/m3	35 mg/m3	150 mg/m3
lead	Lead		0.15 mg/m3	120 mg/m3	700 mg/m3
magnesium	Magnesium		18 mg/m3	200 mg/m3	1,200 mg/m3
manganese(II) acetate	Acetic acid, manganese(II) salt (2:1)		9.4 mg/m3	16 mg/m3	96 mg/m3
nickel	Nickel		4.5 mg/m3	50 mg/m3	99 mg/m3
potassium	Potassium		2.3 mg/m3	25 mg/m3	150 mg/m3
selenium	Selenium		0.6 mg/m3	6.6 mg/m3	40 mg/m3
sodium	Sodium		13 mg/m3	140 mg/m3	870 mg/m3
thallium	Thallium		0.06 mg/m3	13 mg/m3	20 mg/m3
ammonium metavanadate	Ammonium vanadate; (Ammonium vanadium oxide; Ammonium metavanadate)		0.01 mg/m3	0.11 mg/m3	80 mg/m3
zinc	Zinc		6 mg/m3	21 mg/m3	120 mg/m3
nitric acid	Nitric acid		Not Available	Not Available	Not Available
ammonium phosphate, monobasic	Ammonium dihydrogen phosphate; (Monoammonium phosphate)		17 mg/m3	190 mg/m3	1,100 mg/m3
ammonium fluorosilicate	Ammonium hexafluorosilicate; (Ammonium silicofluoride)		12 mg/m3	130 mg/m3	780 mg/m3
uranyl nitrate	Uranyl nitrate (solid); (Bis(nitrato-O,O')dioxouranium)		0.99 mg/m3	5.5 mg/m3	33 mg/m3
uranyl nitrate	Uranyl nitrate hexahydrate		1.3 mg/m3	7 mg/m3	42 mg/m3
uranyl nitrate	Uranyl nitrate (yellow salt)		0.99 mg/m3	5.5 mg/m3	33 mg/m3
thorium oxide	Thorium oxide; (Thorium dioxide)		30 mg/m3	330 mg/m3	2,000 mg/m3
Ingredient	Original IDLH	Revi	Revised IDLH		
aluminium	Not Available	Not A	Not Available		
antimony	80 mg/m3	50 m	50 mg/m3		

Ingredient	Original IDLH	Revised IDLH	
aluminium	Not Available	Not Available	
antimony	80 mg/m3	50 mg/m3	
arsenic	100 mg/m3	5 mg/m3	
barium	1,100 mg/m3	50 mg/m3	
cadmium	50 mg/m3 / 9 mg/m3	9 mg/m3 / 9 [Unch] mg/m3	
calcium	Not Available	Not Available	
chromium	N.E. / N.E.	250 mg/m3	
cobalt	20 mg/m3	20 [Unch] mg/m3	
copper	N.E. / N.E.	100 mg/m3	
iron	Not Available	Not Available	
lead	700 mg/m3	100 mg/m3	
magnesium	Not Available	Not Available	
manganese(II) acetate	N.E./N.E.	500 mg/m3	
nickel	N.E. / N.E.	10 mg/m3	
potassium	Not Available	Not Available	
selenium	Unknown mg/m3 / Unknown ppm	1 mg/m3	
sodium	Not Available	Not Available	
thallium	Not Available	Not Available	
ammonium metavanadate	Not Available	Not Available	
zinc	Not Available	Not Available	
nitric acid	100 ppm	25 ppm	
water	Not Available	Not Available	
ammonium phosphate, monobasic	Not Available	Not Available	
ammonium fluorosilicate	Not Available	Not Available	
uranyl nitrate	20 mg/m3	10 mg/m3	
thorium oxide	Not Available	Not Available	

Exposure controls

Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Chemwatch: 9-407222 Catalogue number: CRM-RS-B

Version No: 1.1

Page 7 of 21

River Sediment Solution B

Issue Date: 06/06/2017

Print Date: 06/06/2017

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area, Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range	
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity	
3: Intermittent, low production.	3: High production, heavy use	
4: Large hood or large air mass in motion	4: Small hood-local control only	

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

- Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under
 - Chemical goggles whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.
 - Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
 - Alternatively a gas mask may replace splash goggles and face shields.
 - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection ▶ Elbow length PVC gloves Hands/feet protection ▶ When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. **Body protection** Overalls. PVC Apron. PVC protective suit may be required if exposure severe Other protection Evewash unit.

- Ensure there is ready access to a safety shower.

Thermal hazards

Not Available

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Not Available			
Physical state	Liquid	Relative density (Water = 1)	Not Available	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available	

Version No: 1.1

River Sediment Solution B

Issue Date: **06/06/2017** Print Date: **06/06/2017**

pH (as supplied)	Not Available	Decomposition	Not Available
p (as supplied)	11017 Trailable	temperature	TOTA Wallasio
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	► Contact with alkaline material liberates heat
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled	The material can cause respiratory irritation in some persons. The body's respicorrosive acids can cause irritation of the respiratory tract, with coughing, chokinausea and weakness. The material has NOT been classified by EC Directives or other classification sanimal or human evidence.	ng and mucous membrane dar	nage. There may be dizziness, headache,
Ingestion	Ingestion of acidic corrosives may produce burns around and in the mouth, the t speaking may also be evident. The material has NOT been classified by EC Directives or other classification s animal or human evidence. Poisonings rarely occur after oral administration of manganese salts because the second seco	systems as "harmful by ingestic	on". This is because of the lack of corroborating
Skin Contact	Skin contact with acidic corrosives may result in pain and burns; these may be d Skin contact is not thought to have harmful health effects (as classified under E through wounds, lesions or abrasions. Though considered non-harmful, slight irritation may result from contact becaus itching and skin reaction and inflammation. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may of the material and ensure that any external damage is suitably protected.	C Directives); the material may e of the abrasive nature of the a	still produce health damage following entry aluminium oxide particles. Thus it may cause
Eye	If applied to the eyes, this material causes severe eye damage. Direct eye contact with acid corrosives may produce pain, tears, sensitivity to lig completely.	ght and burns. Mild burns of the	epithelia generally recover rapidly and
Chronic	Repeated or prolonged exposure to acids may result in the erosion of teeth, sw and inflammation of lung tissue often occurs. Long-term exposure to respiratory irritants may result in airways disease, involv Substance accumulation, in the human body, may occur and may cause some of Animal testing shows long term exposure to aluminium oxides may cause lung the greater the tendencies of causing harm. Manganese is an essential trace element. Chronic exposure to low levels of mas slurred speech, disordered muscle tone, fatigue, anorexia, loss of strength and	ing difficulty breathing and relat oncern following repeated or lor disease and cancer, depending unganese can include a mask-li	ed whole-body problems. g-term occupational exposure. on the size of the particle. The smaller the size, ke facial expression, spastic gait, tremors,
	TOXICITY	IRRITATION	
River Sediment Solution B	Not Available	Not Available	
aluminium	TOXICITY Oral (rat) LD50: >2000 mg/kg ^[1]		IRRITATION Not Available
antimony	TOXICITY Dermal (rabbit) LD50: >8300 mg/kg ^[1]		IRRITATION Not Available

Version No: 1.1

Issue Date: 06/06/2017 Print Date: 06/06/2017

Oral (rat) LD50: 100 mg/kg $^{[2]}$ TOXICITY IRRITATION arsenic Oral (rat) LD50: 763 mg/kg^[2] Not Available **TOXICITY** IRRITATION barium Not Available Not Available TOXICITY IRRITATION cadmium Oral (rat) LD50: $>63<259 \text{ mg/kg}>^{[1]}$ Not Available IRRITATION Dermal (rabbit) LD50: >2500 mg/kg^[1] Not Available calcium Oral (rat) LD50: >2000 mg/kg^[1] TOXICITY IRRITATION chromium Not Available Not Available TOXICITY IRRITATION dermal (rat) LD50: >2000 mg/kg^[1] Not Available cobalt Oral (rat) LD50: 6170 mg/kgd^[2] TOXICITY IRRITATION dermal (rat) LD50: >2000 mg/kg^[1] Not Available Inhalation (rat) LC50: 0.733 mg/l/4hr $^{[1]}$ copper Inhalation (rat) LC50: 1.03 mg/l/4hr^[1] Inhalation (rat) LC50: 1.67 mg/l/4hr^[1] Oral (rat) LD50: 300-500 $mg/kg^{[1]}$ TOXICITY IRRITATION iron Oral (rat) LD50: 98600 mg/kg]^[2] Not Available TOXICITY IRRITATION Not Available dermal (rat) LD50: >2000 mg/kg^[1] lead Inhalation (rat) LC50: >5.05 mg/l/4hr^[1] Oral (rat) LD50: >2000 mg/kg^[1] TOXICITY IRRITATION magnesium Oral (rat) LD50: >2000 mg/kg^[1] Not Available TOXICITY IRRITATION manganese(II) acetate Oral (rat) LD50: 2940 mg/kga^[2] Not Available TOXICITY IRRITATION nickel Oral (rat) LD50: 5000 $mg/kg^{[2]}$ Not Available TOXICITY IRRITATION potassium Not Available Not Available TOXICITY IRRITATION selenium Oral (rat) LD50: 6700 $mg/kgd^{[2]}$ Not Available

Page 10 of 21

River Sediment Solution B

Issue Date: 06/06/2017 Print Date: 06/06/2017

Version No: 1.1

Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances								
	Arsenic compounds are classified by the European Union as toxic by inhalation and ingestion and	toxic to aquatic life and long lasting in the environment.							
ARSENIC	WARNING: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO Tumorigenic - Carcinogenic by RTECS criteria.	HUMANS.							
CALCIUM	The solid may react violently on contact with wet skin tissue, i.e. eyes, mouth, causing chemical and thermal burns. The acute effects include burns, ulceration, r tissue death, severe eye damage (corneal burns or opacification), and probable blindness. Inhalation of dust or furnes (especially from a fire involving alcium) will cause shortness of breath, nausea, headache, nose and respiratory tract irritation and in extreme, pneumonitis								
CHROMIUM	On skin and inhalation exposure, chromium and its compounds (except hexavalent) can be a poter Gastrointestinal tumours, lymphoma, musculoskeletal tumours and tumours at site of application re								
COBALT	Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibout Attention should be paid to atopic diathesis, characterised by increased susceptibility to nasal inflat Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the involved.	mmation, asthma and eczema.							
COPPER	for copper and its compounds (typically copper chloride): Acute toxicity: There are no reliable acute oral toxicity results available. WARNING: Inhalation of high concentrations of copper fume may cause "metal fume fever", an aclike respiratory tract irritation with fever.	cute industrial disease of short duration. tiredness, influenza							
LEAD	WARNING: Lead is a cumulative poison and has the potential to cause abortion and intellectual in	npairment to unborn children of pregnant workers.							
MANGANESE(II) ACETATE	Laboratory tests have shown mutagenic effects: Positive B. rec.								
NICKEL	Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen [National Toxicology Program: U.S. Dep. Oral (rat) TDLo: 500 mg/kg/5D-I Inhalation (rat) TCLo: 0.1 mg/m3/24H/17W-C								
THALLIUM	Structural changes in nerves and sheath, changes in extraocular muscles, hair loss recorded								
ZINC	The material may cause skin irritation after prolonged or repeated exposure and may produce on a scaling and thickening of the skin.	contact skin redness, swelling, the production of vesicles,							
NITRIC ACID	For acid mists, aerosols, vapours Test results suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to a The material may produce severe irritation to the eye causing pronounced inflammation. The material may produce respiratory tract irritation, and result in damage to the lung including re The material may cause severe skin irritation after prolonged or repeated exposure and may produ vesicles, scaling and thickening of the skin. Oral (?) LD50: 50-500 mg/kg * [Various Manufacturers]	educed lung function.							
URANYL NITRATE	US NRCP Permissible quarterly intakes of radionuclides for occupational Insolubles- 3.2 microc Lower large intestine. 4.0 x 10^2 per quarter inhalation; critical organ being the lungs. Solubles-the kidneys. 4.5 x 10^2 per quarter inhalation; critical organ being the kidneys.								
THORIUM OXIDE	Thorium and its compounds are mainly alpha particle emitters although beta and gamma radiation is also encountered The radiological danger is considerably more serious than the chemical danger in view of the long they are deposited (mainly in bones, lungs, lymphatic glands etc.) leading to long-term alpha-irrar (liver tumours) Substance has been investigated as a tumorigen; Tumorigenic-carcinogenic in hulymphoma recorded.	diation of the tissues.							
ALUMINIUM & BARIUM & CALCIUM & CHROMIUM & POTASSIUM & SODIUM & WATER & AMMONIUM PHOSPHATE, MONOBASIC & URANYL NITRATE	No significant acute toxicological data identified in literature search.								
BARIUM & CALCIUM & POTASSIUM & SODIUM & AMMONIUM METAVANADATE & NITRIC ACID & AMMONIUM PHOSPHATE, MONOBASIC	Asthma-like symptoms may continue for months or even years after exposure to the material ends.								
CHROMIUM & SELENIUM	The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans.								
CHROMIUM & THORIUM OXIDE	Tenth Annual Report on Carcinogens: Substance known to be Carcinogenic [National Toxicology Program: U.S. Dep.								
COBALT & NICKEL	The following information refers to contact allergens as a group and may not be specific to this pro-	oduct.							
COBALT & NICKEL	WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogen	ic to Humans.							
Acute Toxicity	○ Carcinogenicity	0							
Skin Irritation/Corrosion	✓ Reproductivity	0							
Serious Eye Damage/Irritation	STOT - Single Exposure	0							
Respiratory or Skin sensitisation	STOT - Repeated Exposure	0							
Mutagenicity	○ Aspiration Hazard	0							

Data available but does not fill the criteria for classification
 Data available to make classification

River Sediment Solution B

Issue Date: **06/06/2017** Print Date: **06/06/2017**

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Version No: 1.1

Cadimant Calutian B	ENDPOINT		TEST DURATION (HR)		SPECIES	VALUE		SOUR	CE
ver Sediment Solution B	Not Applicable		Not Applicable		Not Applicable	Not Applie	cable	Not App	olicable
	ENDPOINT	TES	ST DURATION (HR)	SPECIE	:S	V	/ALUE		SOURCE
	LC50	96		Fish		0).078-0.108mg/L		2
	EC50	48		Crustac	ea	0).7364mg/L		2
aluminium	EC50	96		Algae o	r other aquatic plants	0).0054mg/L		2
	BCF	360			r other aquatic plants		mg/L		4
	EC50	120		Fish	<u> </u>		0.000051mg/L		5
	NOEC	72			r other aquatic plants		⇒=0.004mg/L		2
				J	,				
	ENDPOINT	TE	ST DURATION (HR)	SPEC	HES		VALUE		SOURCE
	LC50	96	or boration (iii)	Fish	,iLO		0.93mg/L		2
							_		
antimony	EC50	48		Crust			1mg/L		2
	EC50	72			or other aquatic plants	S	>2.4mg/L		2
	EC50	96		Crust	acea		0.5mg/L		2
	NOEC	720		Fish			>0.0075mg/l	-	2
	ENDPOINT		ST DURATION (HR)		CIES		VALUE		SOURCE
arsenic	LC50	96		Fish			9.9mg/L		4
	EC50	336		Alga	e or other aquatic plan	ts	0.63mg/L		4
	NOEC	336	5	Alga	e or other aquatic plan	ts	<0.75mg/	L	4
barium	ENDPOINT	TEST DURATION (HR)		SPEC	SPECIES		VALUE		SOURCE
	LC50	96		Fish	Fish		>500mg/L		4
	EC50	96		Algae	or other aquatic plants		26mg/L		4
	BCF	24		Crusta	icea		0.000002mg/L	-	4
	EC50	240		Algae	or other aquatic plants		8.10306mg/L		4
	NOEC	48		Crusta	icea		68mg/L		4
	ENDPOINT	TES	ST DURATION (HR)	SPECIE	S	\	/ALUE		SOURCE
	LC50	96		Fish		(0.001mg/L		4
	EC50	48		Crustac	ea	(0.0033mg/L		5
cadmium	EC50	72		Algae o	r other aquatic plants	(0.018mg/L		2
	BCF	960		Fish	Fish		500mg/L		4
	EC50	336		Crustac	Crustacea		0.00065mg/L		5
	NOEC	168		Fish			0.00001821mg/L		4
	ENDPOINT		TEST DURATION (HR)		SPECIES	VA	LUE	sou	JRCE
calcium	EC50		24		Crustacea		6934mg/L 5		
	NOEC		48		Crustacea		.3mg/L	2	
	ENDPOINT	TE	ST DURATION (HR)	SPEC	CIES		VALUE		SOURCE
	LC50	96	. ,	Fish			13.9mg/L		4
	EC50	48		Crust	acea		0.0225mg/L		5
chromium	EC50	72			or other aquatic plants	 S	0.104mg/L		4
C Official	BCF	144	IO		or other aquatic plants		0.0495mg/L		4
	EC50	48	•	Crust		•	0.0495Hg/L 0.0245mg/L		5
			•		uoou				
	NOEC	672	:	Fish			0.00019mg/l	-	4
			OT DUDATION (I'T)		OIFS		V411-		001100=
cohalt ENDPOINT TEST DURATION (HR)		SPE	LIES		VALUE		SOURCE		
cobalt	LC50	96	or bottation (iiit)	Fish			1.406mg/L		2

River Sediment Solution B Version No: 1.1

Page **12** of **21** Issue Date: 06/06/2017 Print Date: 06/06/2017

	EC50	48			tacea			>0.89mg/L		2
	EC50	72				quatic plants		0.144mg/L		2
	BCF	134	4	Fish				0.99mg/L		4
	EC50	70				quatic plants		0.02mg/L		2
	NOEC	168		Alga	e or other a	quatic plants		0.0018mg/L		2
	ENDPOINT	TES	T DURATION (HR)	SPEC	IES		١	VALUE		SOURCE
	LC50	96	,	Fish				0.0028mg/L		2
	EC50	48		Crusta	acea			0.001mg/L		5
copper	EC50	72				uatic plants		0.013335mg/L		4
соррег	BCF	960		Fish	or ourier aq	datic plains		200mg/L		4
	EC50	96		Crusta	2000					5
		_		_				0.001mg/L		4
	NOEC	96		Crusta	acea			0.0008mg/L		4
	ENDPOINT	TES	T DURATION (HR)	SPECI	ES		V	ALUE		SOURCE
	LC50	96	,	Fish				05mg/L		2
	EC50	96			or other aqu	atic plants		7mg/L		4
iron	BCF	24		Crusta		idio pidino		0000002mg/L		4
	EC50	504		Crusta				49mg/L		2
	NOEC	504		Fish				52mg/L		2
	NOEC	504		FISH			0.	52Hg/L		
	ENDPOINT	TES	ST DURATION (HR)	SPEC	CIES			VALUE		SOURCE
	LC50	96	. ,	Fish				0.0079mg/L		2
	EC50	48			Crustacea			0.029mg/L		2
lead	EC50	72				nuatic plants		0.0205mg/L		2
icad	BCFD	8			Algae or other aquatic plants Fish			4.324mg/L		4
	EC50	48			or other a	ruatic plante		0.0217mg/L		2
					Algae or other aquatic plants Fish			0.00003mg/L		
	NOEC	672		FISH				0.00003rtig/L		4
	ENDPOINT	TES	ST DURATION (HR)	SPE	ECIES			VALUE		SOURCE
	LC50	96		Fish)			541mg/L		2
magnesium	EC50	72				aquatic plants		>20mg/L		2
-	EC50	72		Algae or other aquatic plants			>20mg/L		2	
	NOEC	72			Algae or other aquatic plants			>25.5mg/L	-	2
manganaca(II) acatata	ENDPOINT		TEST DURATION (HR)		SPECIES	3	VALUE		SOUF	₹CE
manganese(II) acetate	Not Applicable		Not Applicable		Not Applicable Not Ap		Not Applica	Applicable Not Applicable		pplicable
	ENDPOINT		T DURATION (HR)	SPECI	ES			ALUE		SOURCE
	LC50	96		Fish				0000475mg/L		4
	EC50	48		Crustacea			0.013mg/L		5	
nickel	EC50	72			Algae or other aquatic plants			0.0407mg/L		2
	BCF	1440		-	or other aqu	atic plants		0.47mg/L		4
	EC50	720		Crusta				0.0062mg/L		2
	NOEC	72		Algae	or other aqu	atic plants	0.	0035mg/L		2
	ENDPOINT		TEST DUBATION (UD)			SPECIES	\/A	LUE	80	URCE
potassium	EC50		TEST DURATION (HR)			Crustacea)mg/L	5	ONOL
	EC30		24			Crusiacea	400	JIIIg/L		
		TES	T DURATION (HR)	SPEC	IES		1	/ALUE		SOURCE
	ENDPOINT	TEST DURATION (HR)		Fish				>0.0262mg/L		2
	LC50	96					-			
		96 48		Crusta	acea		;	-		2
selenium	LC50 EC50	48				uatic plants		>0.1603mg/L >0.00173mg/L		
selenium	LC50 EC50 EC50	48 72		Algae	or other aq	uatic plants	>	>0.00173mg/L		2
selenium	LC50 EC50	48		Algae Crusta	or other aq	uatic plants	;			

Chemwatch: 9-407222 Page 13 of 21

Catalogue number: CRM-RS-B

Version No: 1.1

River Sediment Solution B

Issue Date: **06/06/2017**Print Date: **06/06/2017**

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Ecotoxicity:

The tolerance of water organisms towards pH margin and variation is diverse. Recommended pH values for test species listed in OECD guidelines are between 6.0 and almost 9. Acute testing with fish showed 96h-LC50 at about pH 3.5

For Fluorides: Small amounts of fluoride have beneficial effects however, excessive intake over long periods may cause dental and/or skeletal fluorosis. Fluorides are absorbed by humans following inhalation of workplace and ambient air that has been contaminated, ingestion of drinking water and foods and dermal contact. Populations living in areas with high fluoride levels in groundwater may be exposed to higher levels of fluorides in their drinking water or in beverages prepared with the water. Among these populations, outdoor labourers, people living in hot climates, and people with excessive thirst will generally have the greatest daily intake of fluorides because they consume greater amounts of water.

Atmospheric Fate: Both hydrogen fluoride and particulate fluorides will be transported in the atmosphere and deposited on land or water by wet and dry deposition. Non-volatile inorganic fluoride particulates are removed from the atmosphere via condensation or nucleation processes. Fluorides adsorbed on particulate matter in the atmosphere are generally stable and are not readily hydrolyzed, although they may be degraded by radiation if they persist in the atmosphere. Fluorine and the silicon fluorides (fluosilicates, silicofluorides) are hydrolyzed in the atmosphere to form hydrogen fluoride. Hydrogen fluoride may combine with water vapour to produce an aerosol or fog of aqueous hydrofluoric acid. Inorganic fluoride compounds, with the exception of sulfur hexafluoride, are not expected to remain in the troposphere for long periods or to migrate to the stratosphere. Estimates of the residence time of sulfur hexafluoride in the atmosphere range from 500 to several thousand years. Fluoride in aerosols can be transported over large distances by wind or as a result of atmospheric turbulence. Fluorosilicic acid and hydrofluoric acid in high aquatic concentrations such as may be found in industrial waste ponds may volatilize, releasing silicon tetrafluoride and hydrogen fluoride into the atmosphere. Soluble inorganic fluorides may also form aerosols at the air/water interface or vaporize into the atmosphere whereas undissolved species generally undergo sedimentation.

Terrestrial Fate: Soils - Atmospheric fluorides may be transported to soils and surface waters through both wet and dry deposition processes where they may form complexes and bind strongly to soil and sediment. Solubilisation of inorganic fluorides from minerals may also be enhanced by the presence of bentonite clays and humic acid. Factors that influence the mobility of inorganic fluorides in soil are pH and the formation of aluminium and calcium complexes. In more acidic soils, concentrations of inorganic fluoride were considerably higher in the deeper horizons. The low affinity of fluorides for organic material results in leaching from the more acidic surface horizon and increased retention by clay minerals and silts in the more alkaline, deeper horizons. The maximum adsorption of fluoride to soil was reported to occur at pH 5.5. In acidic soils with pH below 6, most of the fluoride is in complexes with either aluminium or iron. Fluoride in alkaline soils at pH 6.5 and above is almost completely fixed in soils as calcium fluoride, if sufficient calcium carbonate is available. Fluoride is extremely immobile in soil.

Aquatic Fate: Fresh Water: - In water, the transport and transformation of inorganic fluorides are influenced by pH, water hardness and the presence of ion-exchange materials such as clays. In natural water, fluoride forms strong complexes with aluminium in water, and fluorine chemistry in water is largely regulated by aluminium concentration and pH. Below pH 5, fluoride is almost entirely complexed with aluminium and consequently, the concentration of free F- is low. Once dissolved, inorganic fluorides remain in solution under conditions of low pH and hardness and in the presence of ion-exchange material. Sea Water - Fluoride forms stable complexes with calcium and magnesium, which are present in sea water. Calcium carbonate precipitation dominates the removal of dissolved fluoride from sea water. The residence time for fluoride in ocean sediment is calculated to be 2-3 million years.

Ecotoxicity: Fluorides have been shown to accumulate in animals that consume fluoride-containing foliage. However, accumulation is primarily in skeletal tissue and therefore, it is unlikely that fluoride will biomagnify up the food chain.

For Manganese and its Compounds:

Environmental Fate: Manganese is a naturally occurring element in the environment occurring as a result of weathering of geological material. It also occurs from its use in steel manufacture/coal mining. The most commonly occurring of 11 possible oxidation states are +2, (e.g. manganese chloride or sulfate), +4, (e.g. manganese dioxide), and +7 (e.g. potassium permanganate), although the latter is unstable in the environment.

Atmospheric Fate: Elemental/inorganic manganese compounds may exist in air as suspended particulates from industrial emissions or soil erosion. Manganese-containing particles are mainly removed from the atmosphere by gravitational settling - large particles tend to fall out faster than small particles. The half-life of airborne particles is usually on the order of days, depending on the size of the particle and atmospheric conditions. Some removal by washout mechanisms such as rain may also occur, although it is of minor significance in comparison to dry deposition. Terrestrial Fate: Manganese in soil can migrate as particulate matter to air or water and soluble manganese compounds can be leached from the soil. High soil pH reduces manganese availability while low soil pH will increase availability, even to the point of toxicity. Soils high in organic matter Φ tie up Φ manganese such that high organic matter soils can be manganese deficient. Fertilization with materials containing chlorine, nitrate, and/or sulfate, can also enhance manganese uptake, (termed the anion effect). Adsorption of soluble manganese to soil/sediments increases, (cation), and organic matter increases. In some cases, adsorption of manganese to soils may not be a readily reversible process. At low concentrations, manganese may be fixed by clays and will not be released into solution readily. Bacteria and microflora can increase the mobility of manganese.

Aquatic Fate: Most manganese salts, with the exception of phosphates, carbonates, and oxides, are soluble in water. Solubility is controlled by the precipitation of insoluble forms, (species). In most oxygenated waters, the most common form is insoluble manganese oxide. Manganese chloride is the dominant form at pH 4-7, but may oxidize at pH>8 or 9.

Ecotoxicity: While lower organisms, (plankton, aquatic plants, and some fish), can significantly bioconcentrate manganese, higher organisms, (including humans), tend to maintain manganese balance. Manganese in water may be significantly concentrated at lower levels of the food chain.

Uptake of manganese by aquatic invertebrates and fish increases with temperature and decreases with pH. Fish and crustaceans appear to be the most sensitive to acute and chronic exposures. The substance has low toxicity to trout but, is moderately toxic to Coho salmon. The substance is toxic to Daphnia water fleas and moderately toxic to freshwater algae Pseudomonas putida and Photobacterium phosphoreum bacteria.

For Vanadium Compounds

Environmental Fate: Vanadium is travels through the environment via long-range transportation in the atmosphere, water, and land by natural and man-made sources, wet and dry deposition, adsorption and complexing. From natural sources, vanadium is probably in the form of less soluble trivalent mineral particles.

Atmospheric Fate: Vanadium generally enters the atmosphere as an aerosol. Natural and man-made sources of vanadium tend to release large particles that are more likely to settle near the source. Smaller particles, such as those emitted from oil-fueled power plants, have a longer residence time in the atmosphere and are more likely to be transported farther away from the site of release.

Terrestrial Fate: Soil - Transport and partitioning of vanadium in soil is influenced by pH and reduction potential. Ferric hydroxides and solid bitumens (organic) are the main carriers of vanadium in the sedimentation process. Iron acts as a carrier for trivalent vanadium and is responsible for its diffusion through molten rocks where it becomes trapped during crystallization. Vanadium is fairly mobile in neutral or alkaline soils, but its mobility decreases in acidic soils. Under oxidizing, unsaturated conditions, some mobility is observed, but under reducing, saturated conditions, vanadium is immobile. Plants - Vanadium levels in terrestrial plants are dependent upon the amount of water-soluble vanadium available in the soil as well as pH and growing conditions. The uptake of vanadium into the above-ground parts of many plants is low, although root concentrations have shown some correlation with levels in the soil. Certain legumes have been shown to be vanadium accumulators and the root nodules of these plants may contain vanadium levels three times greater than those of the surrounding soil. Fly agaric (Amanita muscaria) mushrooms are known to actively accumulate vanadium.

Aquatic Fate: Vanadium is eventually adsorbed to hydroxides or associated with organic compounds and is deposited on the sea bed. Vanadium is transported in water by solution (13%) or suspension (87%). Upon entering the ocean, vanadium is deposited to the sea bed. Only about 0.001% of vanadium entering the oceans is estimated to persist in soluble form. Sorption and biochemical processes are thought to contribute to the extraction of vanadium from sea water. Adsorption to organic matter as well as to manganese oxide and ferric hydroxide results in the precipitation of dissolved vanadium. Biochemical processes are also of importance in the partitioning from sea water to sediment.

Ecotoxicity: Some marine organisms, in particular the sea squirts, bioconcentrate vanadium very efficiently, attaining body concentrations approximately 10,000 times greater than the ambient sea water. Upon the death of the organism, the body burden adds to the accumulation of vanadium in silt. In general, marine plants and invertebrates contain higher levels of vanadium than terrestrial plants and animals. In the terrestrial environment, bioconcentration is more commonly observed amongst the lower plant phyla than in the higher, seed-producing phyla. Vanadium appears to be present in all terrestrial animals; however tissue concentrations in vertebrates are often so low that detection is difficult. The highest levels of vanadium in terrestrial mammals are generally found in the liver and skeletal tissues. No data are available regarding biomagnification of vanadium within the food chain, but human studies suggest that it is unlikely. Bioaccumulation appears to be unlikely.

Prevent, by any means available, spillage from entering drains or water courses.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
ammonium metavanadate	HIGH	HIGH
water	LOW	LOW
ammonium phosphate, monobasic	HIGH	HIGH

Page **14** of **21**

River Sediment Solution B

Catalogue number: CRM-RS-B

Version No: 1.1

Bioaccumulative potential

•	
Ingredient	Bioaccumulation
ammonium metavanadate	LOW (LogKOW = 2.229)
water	LOW (LogKOW = -1.38)
ammonium phosphate,	LOW (LogKOW = -0.7699)

Mobility in soil

Ingredient	Mobility
ammonium metavanadate	LOW (KOC = 35.04)
water	LOW (KOC = 14.3)
ammonium phosphate, monobasic	HIGH (KOC = 1)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging

- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation with soda-ash or soda-lime followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

disposal

Labels Required

Marine Pollutant

NO

Land transport (DOT)

UN number	3264
UN proper shipping name	Corrosive liquid, acidic, inorganic, n.o.s. (contains nitric acid)
Transport hazard class(es)	Class 8 Subrisk Not Applicable
Packing group	П
Environmental hazard	Not Applicable
Special precautions for user	Hazard Label 8 Special provisions 386, B2, IB2, T11, TP2, TP27

Air transport (ICAO-IATA / DGR)

UN number	3264				
UN proper shipping name	Corrosive liquid, acidic	, inorganic, n.o.s. * (c	ontains nitric acid)		
	ICAO/IATA Class	8			
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable			
	ERG Code	8L			
Packing group	II				
Environmental hazard	Not Applicable				
	Special provisions		A3A803		
Special precautions for user	Cargo Only Packing Instructions				
,	Cargo Only Maximum	Oty / Pack	30 L	1	

Issue Date: 06/06/2017

Print Date: 06/06/2017

Version No: 1.1

River Sediment Solution B

Issue Date: **06/06/2017** Print Date: **06/06/2017**

Passenger and Cargo Packing Instructions	851
Passenger and Cargo Maximum Qty / Pack	1 L
Passenger and Cargo Limited Quantity Packing Instructions	Y840
Passenger and Cargo Limited Maximum Qty / Pack	0.5 L

Sea transport (IMDG-Code / GGVSee)

UN number	3264
UN proper shipping name	CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. (contains nitric acid)
Transport hazard class(es)	IMDG Class 8 IMDG Subrisk Not Applicable
Packing group	Ш
Environmental hazard	Not Applicable
Special precautions for user	EMS Number F-A, S-B Special provisions 274 Limited Quantities 1 L

Transport in bulk according to Annex II of MARPOL and the IBC code

Source	Product name	Pollution Category	Ship Type
IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk	Nitric acid (70% and over) Nitric acid (less than 70%)	Y; Y	2 2

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

ALUMINIUM(7429-90-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Alaska Limits for Air Contaminants	US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air
US - California Permissible Exposure Limits for Chemical Contaminants	Contaminants
US - Hawaii Air Contaminant Limits	US - Washington Permissible exposure limits of air contaminants
US - Massachusetts - Right To Know Listed Chemicals	US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
US - Michigan Exposure Limits for Air Contaminants	US ACGIH Threshold Limit Values (TLV)
US - Minnesota Permissible Exposure Limits (PELs)	US ACGIH Threshold Limit Values (TLV) - Carcinogens
US - Oregon Permissible Exposure Limits (Z-1)	US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)
US - Pennsylvania - Hazardous Substance List	US EPCRA Section 313 Chemical List
US - Rhode Island Hazardous Substance List	US NIOSH Recommended Exposure Limits (RELs)
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	US OSHA Permissible Exposure Levels (PELs) - Table Z1
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

ANTIMONY(7440-36-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

ANTIMONY(7440-36-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS	
US - Alaska Limits for Air Contaminants	US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air
US - California Permissible Exposure Limits for Chemical Contaminants	Contaminants
US - Hawaii Air Contaminant Limits	US - Washington Permissible exposure limits of air contaminants
US - Idaho - Limits for Air Contaminants	US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
US - Massachusetts - Right To Know Listed Chemicals	US ACGIH Threshold Limit Values (TLV)
US - Michigan Exposure Limits for Air Contaminants	US Clean Air Act - Hazardous Air Pollutants
US - Minnesota Permissible Exposure Limits (PELs)	US CWA (Clean Water Act) - Priority Pollutants
US - Oregon Permissible Exposure Limits (Z-1)	US CWA (Clean Water Act) - Toxic Pollutants
US - Pennsylvania - Hazardous Substance List	US EPCRA Section 313 Chemical List
US - Rhode Island Hazardous Substance List	US NIOSH Recommended Exposure Limits (RELs)
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	US OSHA Permissible Exposure Levels (PELs) - Table Z1
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

ARSENIC(7440-38-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Version No: 1.1

River Sediment Solution B

Issue Date: 06/06/2017 Print Date: 06/06/2017

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

- US Alaska Limits for Air Contaminants
- US California OEHHA/ARB Acute Reference Exposure Levels and Target Organs (RELs)
- US California OEHHA/ARB Chronic Reference Exposure Levels and Target Organs
- US California Permissible Exposure Limits for Chemical Contaminants
- US Hawaii Air Contaminant Limits
- US Idaho Limits for Air Contaminants
- US Massachusetts Right To Know Listed Chemicals
- US Minnesota Permissible Exposure Limits (PELs)
- US New Jersey Right to Know Special Health Hazard Substance List (SHHSL): Carcinogens
- US Pennsylvania Hazardous Substance List
- US Tennessee Occupational Exposure Limits Limits For Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants

- US Washington Permissible exposure limits of air contaminants
- US Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values
- US ACGIH Threshold Limit Values (TLV)
- US ACGIH Threshold Limit Values (TLV) Carcinogens
- US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)
- US Clean Air Act Hazardous Air Pollutants
- US CWA (Clean Water Act) Priority Pollutants
- US CWA (Clean Water Act) Toxic Pollutants
- US EPCRA Section 313 Chemical List
- US National Toxicology Program (NTP) 14th Report Part A Known to be Human Carcinogens
- US NIOSH Recommended Exposure Limits (RELs)
- US OSHA Permissible Exposure Levels (PELs) Table Z1
- US Toxic Substances Control Act (TSCA) Chemical Substance Inventory

BARIUM(7440-39-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- US Alaska Limits for Air Contaminants
- US Hawaii Air Contaminant Limits
- US Idaho Limits for Air Contaminants
- US Massachusetts Right To Know Listed Chemicals
- US Minnesota Permissible Exposure Limits (PELs)
- US Pennsylvania Hazardous Substance List
- US Rhode Island Hazardous Substance List
- US Tennessee Occupational Exposure Limits Limits For Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air
- US Washington Permissible exposure limits of air contaminants
- US ACGIH Threshold Limit Values (TLV)
- US ACGIH Threshold Limit Values (TLV) Carcinogens
- US EPA Carcinogens Listing
- US EPCRA Section 313 Chemical List
- US OSHA Permissible Exposure Levels (PELs) Table 71
- US Toxic Substances Control Act (TSCA) Chemical Substance Inventory

CADMIUM(7440-43-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

- US Alaska Limits for Air Contaminants
- US California Proposition 65 Priority List for the Development of MADLs for Chemicals Causing Reproductive Toxicity
- US California OEHHA/ARB Chronic Reference Exposure Levels and Target Organs (CRELs)
- US California Permissible Exposure Limits for Chemical Contaminants
- US California Proposition 65 Carcinogens
- US California Proposition 65 Maximum Allowable Dose Levels (MADLs) for Chemicals Causing Reproductive Toxicity
- US California Proposition 65 No Significant Risk Levels (NSRLs) for Carcinogens
- US California Proposition 65 Reproductive Toxicity
- US Hawaii Air Contaminant Limits
- US Idaho Acceptable Maximum Peak Concentrations
- US Idaho Limits for Air Contaminants
- US Massachusetts Right To Know Listed Chemicals
- US Michigan Exposure Limits for Air Contaminants
- US Minnesota Permissible Exposure Limits (PELs)
- US New Jersey Right to Know Special Health Hazard Substance List (SHHSL): Carcinogens
- US Oregon Permissible Exposure Limits (Z-1)
- US Oregon Permissible Exposure Limits (Z-2)
- US Pennsylvania Hazardous Substance List
- US Rhode Island Hazardous Substance List
- US Tennessee Occupational Exposure Limits Limits For Air Contaminants

- US Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
- US Washington Permissible exposure limits of air contaminants
- US Washington Toxic air pollutants and their ASIL. SQER and de minimis emission values
- US Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
- US Wyoming Toxic and Hazardous Substances Table Z-2 Acceptable ceiling concentration, Acceptable maximum peak above the acceptable ceiling concentration for an 8-hr shift
- US ACGIH Threshold Limit Values (TLV)
- US ACGIH Threshold Limit Values (TLV) Carcinogens
- US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)
- US Clean Air Act Hazardous Air Pollutants
- US CWA (Clean Water Act) Priority Pollutants
- US CWA (Clean Water Act) Toxic Pollutants
- US EPA Carcinogens Listing
- US EPCRA Section 313 Chemical List
- US National Toxicology Program (NTP) 14th Report Part A Known to be Human Carcinogens
- US NIOSH Recommended Exposure Limits (RELs)
- US OSHA Carcinogens Listing
- US OSHA Permissible Exposure Levels (PELs) Table Z1
- US OSHA Permissible Exposure Levels (PELs) Table Z2
- US Toxic Substances Control Act (TSCA) Chemical Substance Inventory

CALCIUM(7440-70-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- US Massachusetts Right To Know Listed Chemicals
- US Pennsylvania Hazardous Substance List

- US Rhode Island Hazardous Substance List
- US Toxic Substances Control Act (TSCA) Chemical Substance Inventory

CHROMIUM(7440-47-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- International Agency for Research on Cancer (IARC) Agents Classified by the IARC Monographs
- US Alaska Limits for Air Contaminants
- US California Permissible Exposure Limits for Chemical Contaminants
- US Hawaii Air Contaminant Limits
- US Idaho Limits for Air Contaminants
- US Massachusetts Right To Know Listed Chemicals
- US Michigan Exposure Limits for Air Contaminants
- US Oregon Permissible Exposure Limits (Z-1)
- US Pennsylvania Hazardous Substance List US - Rhode Island Hazardous Substance List
- US Tennessee Occupational Exposure Limits Limits For Air Contaminants
- US Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

- US Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
- US Washington Permissible exposure limits of air contaminants
- US Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
- US ACGIH Threshold Limit Values (TLV)
- US ACGIH Threshold Limit Values (TLV) Carcinogens
- US Clean Air Act Hazardous Air Pollutants
- US CWA (Clean Water Act) Priority Pollutants US CWA (Clean Water Act) - Toxic Pollutants
- US EPCRA Section 313 Chemical List
- US NIOSH Recommended Exposure Limits (RELs)
- US OSHA Permissible Exposure Levels (PELs) Table Z1 US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

COBALT(7440-48-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Page 17 of 21

Print Date: 06/06/2017 Catalogue number: CRM-RS-B **River Sediment Solution B**

Version No: 1.1

Monographs

Carcinogens

US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values

Issue Date: 06/06/2017

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

US ACGIH Threshold Limit Values (TLV)

US ACGIH Threshold Limit Values (TLV) - Carcinogens

US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)

US Clean Air Act - Hazardous Air Pollutants

Chemicals Causing Reproductive Toxicity

US EPCRA Section 313 Chemical List

US National Toxicology Program (NTP) 14th Report Part B.

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Levels (PELs) - Table Z1

US Priority List for the Development of Proposition 65 Safe Harbor Levels - No Significant Risk Levels (NSRLs) for Carcinogens and Maximum Allowable Dose Levels (MADLs) for

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

COPPER(7440-50-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

US - New Jersey Right to Know - Special Health Hazard Substance List (SHHSL):

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC

US - California Permissible Exposure Limits for Chemical Contaminants

US - Alaska Limits for Air Contaminants

US - Alaska Limits for Air Contaminants

US - Idaho - Limits for Air Contaminants

US - Hawaii Air Contaminant Limits

US - California Proposition 65 - Carcinogens

US - Massachusetts - Right To Know Listed Chemicals

US - Michigan Exposure Limits for Air Contaminants

US - Minnesota Permissible Exposure Limits (PELs)

US - Oregon Permissible Exposure Limits (Z-1)

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

US - California Permissible Exposure Limits for Chemical Contaminants

US - Hawaii Air Contaminant Limits

US - Idaho - Limits for Air Contaminants

US - Massachusetts - Right To Know Listed Chemicals

US - Michigan Exposure Limits for Air Contaminants

US - Minnesota Permissible Exposure Limits (PELs)

US - Oregon Permissible Exposure Limits (Z-1)

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

US ACGIH Threshold Limit Values (TLV)

US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)

US CWA (Clean Water Act) - Priority Pollutants

US CWA (Clean Water Act) - Toxic Pollutants

US EPA Carcinogens Listing

US EPCRA Section 313 Chemical List

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Levels (PELs) - Table Z1

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

IRON(7439-89-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)

US - California Permissible Exposure Limits for Chemical Contaminants

US - Hawaii Air Contaminant Limits

US - Michigan Exposure Limits for Air Contaminants

US - Oregon Permissible Exposure Limits (Z-1)

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Washington Permissible exposure limits of air contaminants

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

US - Washington Toxic air pollutants and their ASIL. SQER and de minimis emission values

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air

LEAD(7439-92-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

US - Alaska Limits for Air Contaminants

US - California - Proposition 65 - Priority List for the Development of MADLs for Chemicals Causing Reproductive Toxicity

US - California Permissible Exposure Limits for Chemical Contaminants

US - California Proposition 65 - Carcinogens

US - California Proposition 65 - Maximum Allowable Dose Levels (MADLs) for Chemicals Causing Reproductive Toxicity

US - California Proposition 65 - No Significant Risk Levels (NSRLs) for Carcinogens

US - California Proposition 65 - Reproductive Toxicity

US - Hawaii Air Contaminant Limits

US - Idaho - Acceptable Maximum Peak Concentrations

US - Idaho - Limits for Air Contaminants

US - Massachusetts - Right To Know Listed Chemicals

US - Minnesota Permissible Exposure Limits (PELs)

US - New Jersey Right to Know - Special Health Hazard Substance List (SHHSL):

Carcinogens

US - Pennsylvania - Hazardous Substance List US - Rhode Island Hazardous Substance List

US ACGIH Threshold Limit Values (TLV) US ACGIH Threshold Limit Values (TLV) - Carcinogens

US Clean Air Act - Hazardous Air Pollutants

US CWA (Clean Water Act) - Priority Pollutants

US CWA (Clean Water Act) - Toxic Pollutants

US EPA Carcinogens Listing

Contaminants

US EPCRA Section 313 Chemical List

US National Toxicology Program (NTP) 14th Report Part B.

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Levels (PELs) - Table Z1

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

MAGNESIUM(7439-95-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)

US - California Permissible Exposure Limits for Chemical Contaminants

US - Hawaii Air Contaminant Limits

US - Massachusetts - Right To Know Listed Chemicals

US - Michigan Exposure Limits for Air Contaminants

US - Oregon Permissible Exposure Limits (Z-1)

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

Version No: 1.1

River Sediment Solution B

Issue Date: **06/06/2017**Print Date: **06/06/2017**

US - Alaska Limits for Air Contaminants US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants US - California Permissible Exposure Limits for Chemical Contaminants US - Washington Permissible exposure limits of air contaminants US - Hawaii Air Contaminant Limits US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants US - Idaho - Limits for Air Contaminants US - Michigan Exposure Limits for Air Contaminants US Clean Air Act - Hazardous Air Pollutants US - Minnesota Permissible Exposure Limits (PELs) US EPCRA Section 313 Chemical List US - Oregon Permissible Exposure Limits (Z-1) US OSHA Permissible Exposure Levels (PELs) - Table Z1 US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

NICKEL(7440-02-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Alaska Limits for Air Contaminants
US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)
US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs
(CRELs)

US - California Permissible Exposure Limits for Chemical Contaminants

US - California Proposition 65 - Carcinogens

US - Hawaii Air Contaminant Limits

US - Idaho - Limits for Air Contaminants

US - Massachusetts - Right To Know Listed Chemicals US - Michigan Exposure Limits for Air Contaminants

US - Minnesota Permissible Exposure Limits (PELs)

US - New Jersey Right to Know - Special Health Hazard Substance List (SHHSL): Carcinogens

US - Oregon Permissible Exposure Limits (Z-1)

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants

US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants

US ACGIH Threshold Limit Values (TLV)

US ACGIH Threshold Limit Values (TLV) - Carcinogens

US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)

US Clean Air Act - Hazardous Air Pollutants US CWA (Clean Water Act) - Priority Pollutants

US CWA (Clean Water Act) - Toxic Pollutants US EPCRA Section 313 Chemical List

US National Toxicology Program (NTP) 14th Report Part B.

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Levels (PELs) - Table Z1

US Priority List for the Development of Proposition 65 Safe Harbor Levels - No Significant Risk Levels (NSRLs) for Carcinogens and Maximum Allowable Dose Levels (MADLs) for

Chemicals Causing Reproductive Toxicity

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

POTASSIUM(7440-09-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List Passenger and Cargo Aircraft

US - Massachusetts - Right To Know Listed Chemicals

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

SELENIUM(7782-49-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

US - Alaska Limits for Air Contaminants

 ${\tt US-California\ OEHHA/ARB-Acute\ Reference\ Exposure\ Levels\ and\ Target\ Organs\ (RELs)}$

US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)

US - Hawaii Air Contaminant Limits

US - Idaho - Limits for Air Contaminants

US - Massachusetts - Right To Know Listed Chemicals

US - Minnesota Permissible Exposure Limits (PELs)

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

 ${\tt US-Tennessee\ Occupational\ Exposure\ Limits-Limits\ For\ Air\ Contaminants}$

 ${\tt US-Vermont\,Permissible\,Exposure\,Limits\,Table\,Z-1-A\,Final\,Rule\,Limits\,for\,Air\,Contaminants}$

 $\ensuremath{\mathsf{US}}$ - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants

US - Washington Permissible exposure limits of air contaminants

US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values

US ACGIH Threshold Limit Values (TLV)

US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)

US Clean Air Act - Hazardous Air Pollutants US CWA (Clean Water Act) - Priority Pollutants

US CWA (Clean Water Act) - Toxic Pollutants

US EPA Carcinogens Listing

US EPCRA Section 313 Chemical List

US NIOSH Recommended Exposure Limits (RELs)
US OSHA Permissible Exposure Levels (PELs) - Table Z1

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

SODIUM(7440-23-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List Passenger and Cargo Aircraft

US - Massachusetts - Right To Know Listed Chemicals

US - Pennsylvania - Hazardous Substance List

US ACGIH Threshold Limit Values (TLV)

US - Pennsylvania - Hazardous Substance List

US - Rhode Island Hazardous Substance List

US CWA (Clean Water Act) - List of Hazardous Substances

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

THALLIUM(7440-28-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - Massachusetts - Right To Know Listed Chemicals
US - Manuel Clean Water Act) - Priority Pollutants
US - Minnesota Permissible Exposure Limits (PELs)
US - Pennsylvania - Hazardous Substance List
US - Pennsylvania - Hazardous Substance List
US - Rhode Island Hazardous Substance List

AMMONIUM METAVANADATE(7803-55-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)

US - Massachusetts - Right To Know Listed Chemicals

US EPCRA Section 313 Chemical List

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

ZINC(7440-66-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Chemwatch: 9-407222 Page 19 of 21

Catalogue number: CRM-RS-B

US - Pennsylvania - Hazardous Substance List US - Rhode Island Hazardous Substance List

Version No: 1.1

River Sediment Solution B

Issue Date: 06/06/2017 Print Date: 06/06/2017

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants Monographs US - Washington Permissible exposure limits of air contaminants US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants (CRELs) US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs) US - California Permissible Exposure Limits for Chemical Contaminants US CWA (Clean Water Act) - Priority Pollutants US - Hawaii Air Contaminant Limits US CWA (Clean Water Act) - Toxic Pollutants US - Massachusetts - Right To Know Listed Chemicals US EPA Carcinogens Listing US - Michigan Exposure Limits for Air Contaminants US EPCRA Section 313 Chemical List US - Oregon Permissible Exposure Limits (Z-1) US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

NITRIC ACID(7697-37-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List	US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
Passenger and Cargo Aircraft	US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air
US - Alaska Limits for Air Contaminants	Contaminants
US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)	US - Washington Permissible exposure limits of air contaminants
US - California Permissible Exposure Limits for Chemical Contaminants	US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values
US - Hawaii Air Contaminant Limits	US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
US - Idaho - Limits for Air Contaminants	US ACGIH Threshold Limit Values (TLV)
US - Massachusetts - Right To Know Listed Chemicals	US CWA (Clean Water Act) - List of Hazardous Substances
US - Michigan Exposure Limits for Air Contaminants	US EPCRA Section 313 Chemical List
US - Minnesota Permissible Exposure Limits (PELs)	US NIOSH Recommended Exposure Limits (RELs)
US - Oregon Permissible Exposure Limits (Z-1)	US OSHA Permissible Exposure Levels (PELs) - Table Z1
US - Pennsylvania - Hazardous Substance List	US SARA Section 302 Extremely Hazardous Substances
US - Rhode Island Hazardous Substance List	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	

WATER(7732-18-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory US - Pennsylvania - Hazardous Substance List

AMMONIUM PHOSPHATE, MONOBASIC(7722-76-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

AMMONIUM FLUOROSILICATE(16919-19-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs	US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs	US - Washington Permissible exposure limits of air contaminants
(CRELs)	US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
US - Hawaii Air Contaminant Limits	US - Wyoming Toxic and Hazardous Substances Table Z-2 Acceptable ceiling concentration,
US - Idaho - Limits for Air Contaminants	Acceptable maximum peak above the acceptable ceiling concentration for an 8-hr shift
US - Massachusetts - Right To Know Listed Chemicals	US CWA (Clean Water Act) - List of Hazardous Substances
US - Oregon Permissible Exposure Limits (Z-1)	US OSHA Permissible Exposure Levels (PELs) - Table Z1
US - Oregon Permissible Exposure Limits (Z-2)	US OSHA Permissible Exposure Levels (PELs) - Table Z2
US - Pennsylvania - Hazardous Substance List	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

URANYL NITRATE(10102-06-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS		
US - Alaska Limits for Air Contaminants	US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	
US - California Permissible Exposure Limits for Chemical Contaminants	US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air	
US - Hawaii Air Contaminant Limits	Contaminants	
US - Idaho - Limits for Air Contaminants	US - Washington Permissible exposure limits of air contaminants	
US - Massachusetts - Right To Know Listed Chemicals	US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	
US - Michigan Exposure Limits for Air Contaminants	US ACGIH Threshold Limit Values (TLV)	
US - Minnesota Permissible Exposure Limits (PELs)	US ACGIH Threshold Limit Values (TLV) - Carcinogens	
US - Oregon Permissible Exposure Limits (Z-1)	US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)	
US - Pennsylvania - Hazardous Substance List	US CWA (Clean Water Act) - List of Hazardous Substances	
US - Rhode Island Hazardous Substance List	US NIOSH Recommended Exposure Limits (RELs)	
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	US OSHA Permissible Exposure Levels (PELs) - Table Z1	
	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory	

THORIUM OXIDE(1314-20-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

US - California Proposition 65 - Carcinogens	US EPCRA Section 313 Chemical List
US - Massachusetts - Right To Know Listed Chemicals	US National Toxicology Program (NTP) 14th Report Part A Known to be Human Carcinogens
US - New Jersey Right to Know - Special Health Hazard Substance List (SHHSL):	US Priority List for the Development of Proposition 65 Safe Harbor Levels - No Significant Risk
Carcinogens	Levels (NSRLs) for Carcinogens and Maximum Allowable Dose Levels (MADLs) for
US - Pennsylvania - Hazardous Substance List	Chemicals Causing Reproductive Toxicity
	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

SECTION 311/312 HAZARD CATEGORIES

Immediate (acute) health hazard	Yes
Delayed (chronic) health hazard	No
Fire hazard	No
Pressure hazard	No

Version No: 1.1

River Sediment Solution B

Issue Date: 06/06/2017 Print Date: 06/06/2017

No Reactivity hazard

US. EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4)

Name	Reportable Quantity in Pounds (lb)	Reportable Quantity in kg
Antimony	5000	2270
Arsenic	1	0.454
Cadmium	10	4.54
Chromium	5000	2270
Copper	5000	2270
Lead	10	4.54
Nickel	100	45.4
Selenium	100	45.4
Sodium	10	4.54
Thallium	1000	454
Ammonium vanadate	1000	454
Zinc	1000	454
Nitric acid	1000	454
Ammonium silicofluoride	1000	454
Uranyl nitrate	100	45.4

State Regulations

US. CALIFORNIA PROPOSITION 65

WARNING: This product contains a chemical known to the State of California to cause cancer and birth defects or other reproductive harm

US - CALIFORNIA PREPOSITION 65 - CARCINOGENS & REPRODUCTIVE TOXICITY (CRT): LISTED SUBSTANCE

Cadmium and cadmium compounds: Cadmium, Cobalt metal powder, Lead and lead compounds: Lead, Nickel (Metallic), Thorium dioxide Listed

National Inventory	Status
Australia - AICS	Y
Canada - DSL	N (uranyl nitrate)
Canada - NDSL	N (sodium; thallium; lead; calcium; zinc; potassium; ammonium metavanadate; magnesium; copper; thorium oxide; water; ammonium phosphate, monobasic; antimony; barium; selenium; ammonium fluorosilicate; aluminium; arsenic; cobalt; nickel; iron; chromium; cadmium; manganese(II) acetate; nitric acid)
China - IECSC	N (thorium oxide)
Europe - EINEC / ELINCS / NLP	Y
Japan - ENCS	N (sodium; thallium; calcium; zinc; uranyl nitrate; potassium; magnesium; copper; thorium oxide; water; ammonium phosphate, monobasic; antimony; barium; selenium; ammonium fluorosilicate; aluminium; arsenic; cobalt; nickel; iron; chromium; cadmium; manganese(II) acetate; nitric acid)
Korea - KECI	N (uranyl nitrate)
New Zealand - NZIoC	N (thorium oxide)
Philippines - PICCS	N (thorium oxide; manganese(II) acetate)
USA - TSCA	Υ
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

Name	CAS No
aluminium	7429-90-5, 91728-14-2
calcium	7440-70-2, 8047-59-4
copper	7440-50-8, 133353-46-5, 133353-47-6, 195161-80-9, 65555-90-0, 72514-83-1
ammonium fluorosilicate	16919-19-0, 1309-32-6
uranyl nitrate	10102-06-4, 13520-83-7, 36478-76-9

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

Page 21 of 21 Chemwatch: 9-407222 Issue Date: 06/06/2017

Catalogue number: CRM-RS-B

Version No: 1.1

River Sediment Solution B

Print Date: 06/06/2017

TEEL: Temporary Emergency Exposure Limit $_{\circ}$

IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value

LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.